Multiple predictor smoothing methods for sensitivity analysis: Description of techniques

[1]  Robert V. Hogg,et al.  Introduction to Mathematical Statistics. , 1966 .

[2]  P. Holgate Tests of randomness based on distance methods , 1965 .

[3]  N. Draper,et al.  Applied Regression Analysis , 1966 .

[4]  Cuthbert Daniel,et al.  Fitting Equations to Data: Computer Analysis of Multifactor Data , 1980 .

[5]  W. V. Loscutoff,et al.  General sensitivity theory , 1972 .

[6]  Peter A. W. Lewis,et al.  Stochastic point processes : statistical analysis, theory, and applications , 1973 .

[7]  J. Neter,et al.  Applied linear statistical models : regression, analysis of variance, and experimental designs , 1974 .

[8]  R Mead,et al.  A review of response surface methodology from a biometric viewpoint. , 1975, Biometrics.

[9]  K. Bellmann Daniel, C., F. S. WOOD, J. W. GORMAN: Fitting Equations to Data. Computer Analysis of Multifactor Data for Scientists and Engineers. John Wiley & Sons, New York-London-Sydney-Toronto 1974. XIV, 342 S., 132 Abb., 33 Tab., £6.50 , 1975 .

[10]  T. Cox,et al.  A conditioned distance ratio method for analyzing spatial patterns , 1976 .

[11]  J. Besag,et al.  Statistical Analysis of Spatial Point Patterns by Means of Distance Methods , 1976 .

[12]  Peter J. Diggle,et al.  Simple Monte Carlo Tests for Spatial Pattern , 1977 .

[13]  K.,et al.  Nonlinear sensitivity analysis of multiparameter model systems , 1977 .

[14]  W. Cleveland Robust Locally Weighted Regression and Smoothing Scatterplots , 1979 .

[15]  Peter J. Diggle,et al.  On parameter estimation and goodness-of-fit testing for spatial point patterns , 1979 .

[16]  R. Iman,et al.  The Use of the Rank Transform in Regression , 1979 .

[17]  B. Ripley Tests of 'Randomness' for Spatial Point Patterns , 1979 .

[18]  M. Eslami,et al.  Introduction to System Sensitivity Theory , 1980, IEEE Transactions on Systems, Man, and Cybernetics.

[19]  Ronald L. Iman,et al.  Risk methodology for geologic disposal of radioactive waste: small sample sensitivity analysis techniques for computer models, with an application to risk assessment , 1980 .

[20]  B. Ripley,et al.  On Sampling Spatial Patterns by Distance Methods , 1980 .

[21]  S. Kaplan,et al.  On The Quantitative Definition of Risk , 1981 .

[22]  J. Friedman,et al.  Projection Pursuit Regression , 1981 .

[23]  Norman R. Draper,et al.  Applied regression analysis (2. ed.) , 1981, Wiley series in probability and mathematical statistics.

[24]  Jon C. Helton,et al.  An Approach to Sensitivity Analysis of Computer Models: Part II - Ranking of Input Variables, Response Surface Validation, Distribution Effect and Technique Synopsis , 1981 .

[25]  G. W. Parry,et al.  Characterization and evaluation of uncertainty in probabilistic risk analysis , 1981 .

[26]  J. Ord,et al.  Spatial and temporal analysis in ecology , 1981 .

[27]  James E. Campbell,et al.  An Approach to Sensitivity Analysis of Computer Models: Part I—Introduction, Input Variable Selection and Preliminary Variable Assessment , 1981 .

[28]  K. Byth On Robust Distance-Based Intensity Estimators , 1982 .

[29]  M. Becker,et al.  Sensitivity and uncertainty analysis of reactor performance parameters , 1982 .

[30]  P. Diggle,et al.  Some Distance-Based Tests of Independence for Sparsely-Sampled Multivariate Spatial Point Patterns , 1983 .

[31]  M. Kramer,et al.  Sensitivity Analysis in Chemical Kinetics , 1983 .

[32]  J. Peacock Two-dimensional goodness-of-fit testing in astronomy , 1983 .

[33]  Guangzhou Zeng,et al.  A comparison of tests for randomness , 1985, Pattern Recognit..

[34]  R. H. Myers Classical and modern regression with applications , 1986 .

[35]  Peter J. Rousseeuw,et al.  Robust regression and outlier detection , 1987 .

[36]  Ronald Christensen,et al.  Plane Answers to Complex Questions , 1987, Springer Texts in Statistics.

[37]  B. Ripley Spatial Point Pattern Analysis in Ecology , 1987 .

[38]  M. B. Beck,et al.  Water quality modeling: A review of the analysis of uncertainty , 1987 .

[39]  G. Fasano,et al.  A multidimensional version of the Kolmogorov–Smirnov test , 1987 .

[40]  E. Gosset A three-dimensional extended Kolmogorov-Smirnov test as a useful tool in astronomy , 1987 .

[41]  P. Legendre,et al.  Developments in Numerical Ecology , 1988 .

[42]  William H. Press,et al.  Numerical recipes : the art of scientific computing : FORTRAN version , 1989 .

[43]  Ronald L. Iman,et al.  Expert opinion in risk analysis: the NUREG-1150 methodology , 1989 .

[44]  C. T. Haan Parametric Uncertainty in Hydrologic Modeling , 1989 .

[45]  A. Saltelli,et al.  Non-parametric statistics in sensitivity analysis for model output: A comparison of selected techniques , 1990 .

[46]  Jack P. C. Kleijnen,et al.  Sensitivity analysis of simulation experiments: regression analysis and statistical design , 1992 .

[47]  G. Apostolakis The concept of probability in safety assessments of technological systems. , 1990, Science.

[48]  T. Turányi Sensitivity analysis of complex kinetic systems. Tools and applications , 1990 .

[49]  Ronald L. Iman,et al.  The Repeatability of Uncertainty and Sensitivity Analyses for Complex Probabilistic Risk Assessments , 1991 .

[50]  Trevor Hastie,et al.  Statistical Models in S , 1991 .

[51]  R. Cooke Experts in Uncertainty: Opinion and Subjective Probability in Science , 1991 .

[52]  W. B. Murfin,et al.  The NUREG-1150 probabilistic risk assessment for the Sequoyah Nuclear Plant☆ , 1992 .

[53]  H Otway,et al.  Expert judgment in risk analysis and management: process, context, and pitfalls. , 1992, Risk analysis : an official publication of the Society for Risk Analysis.

[54]  Jon C. Helton,et al.  Summary description of the methods used in the probabilistic risk assessments for NUREG-1150 , 1992 .

[55]  A. C. Payne,et al.  The NUREG-1150 probabilistic risk assessment for the Peach Bottom Atomic Power Station , 1992 .

[56]  W. B. Murfin,et al.  The NUREG-1150 probabilistic risk assessment for the Surry Nuclear Power Station☆ , 1992 .

[57]  T. D. Brown,et al.  The NUREG-1150 probabilistic risk assessment for the Grand Gulf Nuclear Station , 1992 .

[58]  M. Thorne,et al.  A review of expert judgment techniques with reference to nuclear safety , 1992 .

[59]  George Apostolakis,et al.  A taxonomy of issues related to the use of expert judgments in probabilistic safety studies , 1992 .

[60]  Ilya M. Sobol,et al.  Sensitivity Estimates for Nonlinear Mathematical Models , 1993 .

[61]  Jon C. Helton,et al.  Uncertainty and sensitivity analysis techniques for use in performance assessment for radioactive waste disposal , 1993 .

[62]  Terry Andres,et al.  Sensitivity analysis of model output: an investigation of new techniques , 1993 .

[63]  M. C. Thorne,et al.  The use of expert opinion in formulating conceptual models of underground disposal systems and the treatment of associated bias , 1993 .

[64]  Jon C. Helton,et al.  Calculation of reactor accident safety goals , 1993 .

[65]  Hadi Dowlatabadi,et al.  Sensitivity and Uncertainty Analysis of Complex Models of Disease Transmission: an HIV Model, as an Example , 1994 .

[66]  R. Assunção TESTING SPATIAL RANDOMNESS BY MEANS OF ANGLES , 1994 .

[67]  F. O. Hoffman,et al.  Propagation of uncertainty in risk assessments: the need to distinguish between uncertainty due to lack of knowledge and uncertainty due to variability. , 1994, Risk analysis : an official publication of the Society for Risk Analysis.

[68]  Jon C. Helton,et al.  Treatment of Uncertainty in Performance Assessments for Complex Systems , 1994 .

[69]  D. Hamby A review of techniques for parameter sensitivity analysis of environmental models , 1994, Environmental monitoring and assessment.

[70]  J S Evans,et al.  Use of probabilistic expert judgment in uncertainty analysis of carcinogenic potency. , 1994, Regulatory toxicology and pharmacology : RTP.

[71]  Douglas C. Montgomery,et al.  Response Surface Methodology: Process and Product Optimization Using Designed Experiments , 1995 .

[72]  Jon C. Helton,et al.  Robustness of an uncertainty and sensitivity analysis of early exposure results with the MACCS reactor accident consequence model , 1995 .

[73]  Jon C. Helton,et al.  Guest editorial: treatment of aleatory and epistemic uncertainty in performance assessments for complex systems , 1996 .

[74]  M. Elisabeth Paté-Cornell,et al.  Uncertainties in risk analysis: Six levels of treatment , 1996 .

[75]  Angela M. Dean Methods and Applications of Linear Models , 1996 .

[76]  Robert L. Winkler,et al.  Uncertainty in probabilistic risk assessment , 1996 .

[77]  Jack P. C. Kleijnen,et al.  Sensitivity analysis and related analyses: A review of some statistical techniques , 1997 .

[78]  Sylvie Huet,et al.  Statistical tools for nonlinear regression : a practical guide with S-PLUS examples , 1997 .

[79]  J. C. Helton,et al.  Uncertainty and sensitivity analysis in the presence of stochastic and subjective uncertainty , 1997 .

[80]  Terry Andres Sampling methods and sensitivity analysis for large parameter sets , 1997 .

[81]  J. Garvey,et al.  FROM STAR CHARTS TO STONEFLIES: DETECTING RELATIONSHIPS IN CONTINUOUS BIVARIATE DATA , 1998 .

[82]  L H Goossens,et al.  Joint EC/USNRC expert judgement driven radiological protection uncertainty analysis. , 1998, Journal of radiological protection : official journal of the Society for Radiological Protection.

[83]  Nathan Siu,et al.  Bayesian parameter estimation in probabilistic risk assessment , 1998 .

[84]  J. Simonoff Smoothing Methods in Statistics , 1998 .

[85]  C. Allin Cornell,et al.  Use of Technical Expert Panels: Applications to Probabilistic Seismic Hazard Analysis * , 1998 .

[86]  Stefano Tarantola,et al.  A Quantitative Model-Independent Method for Global Sensitivity Analysis of Model Output , 1999, Technometrics.

[87]  J. Kleijnen,et al.  Statistical analyses of scatterplots to identify important factors in large-scale simulations, 2: robustness of techniques , 1999 .

[88]  H. Rabitz,et al.  General foundations of high‐dimensional model representations , 1999 .

[89]  Raymond H. Myers,et al.  Response Surface Methodology--Current Status and Future Directions , 1999 .

[90]  J. C. Helton,et al.  Uncertainty and sensitivity analysis in performance assessment for the Waste Isolation Pilot Plant , 1999 .

[91]  J C Helton,et al.  Performance Assessment in Support of the 1996 Compliance Certification Application for the Waste Isolation Pilot Plant , 1999, Risk analysis : an official publication of the Society for Risk Analysis.

[92]  Richard D. Deveaux,et al.  Applied Smoothing Techniques for Data Analysis , 1999, Technometrics.

[93]  J. C. Helton,et al.  Statistical Analyses of Scatterplots to Identify Important Factors in Large-Scale Simulations, 1: Review and Comparison of Techniques , 1999 .

[94]  A. Saltelli,et al.  A quantitative model-independent method for global sensitivity analysis of model output , 1999 .

[95]  Michael G. Schimek,et al.  Smoothing and Regression: Approaches, Computation, and Application , 2000 .

[96]  Jon C. Helton,et al.  Summary discussion of the 1996 performance assessment for the Waste Isolation Pilot Plant , 2000, Reliab. Eng. Syst. Saf..

[97]  Jon C. Helton,et al.  The 1996 performance assessment for the Waste Isolation Pilot Plant , 1998, Reliability Engineering & System Safety.

[98]  Jon C. Helton,et al.  Representation of two-phase flow in the vicinity of the repository in the 1996 performance assessment for the Waste Isolation Pilot Plant , 2000, Reliab. Eng. Syst. Saf..

[99]  Jon C. Helton,et al.  Characterization of subjective uncertainty in the 1996 performance assessment for the Waste Isolation Pilot Plant , 2000, Reliab. Eng. Syst. Saf..

[100]  Richard J. Beckman,et al.  A Comparison of Three Methods for Selecting Values of Input Variables in the Analysis of Output From a Computer Code , 2000, Technometrics.

[101]  M. Mckay,et al.  Critique of and Limitations on the Use of Expert Judgements in Accident Consequence Uncertainty Analysis , 2000 .

[102]  L. Goossens,et al.  Expert judgement for a probabilistic accident consequence uncertainty analysis , 2000 .

[103]  M.J.W. Jansen,et al.  Review of Saltelli, A. & Chan, K. & E.M.Scott (Eds) (2000), Sensitivity analysis. Wiley (2000) , 2001 .

[104]  H. Rabitz,et al.  High Dimensional Model Representations , 2001 .

[105]  Eric E. Smith,et al.  Uncertainty analysis , 2001 .

[106]  Kathleen V. Diegert,et al.  Error and uncertainty in modeling and simulation , 2002, Reliab. Eng. Syst. Saf..

[107]  H Christopher Frey,et al.  OF SENSITIVITY ANALYSIS , 2001 .

[108]  F. J. Davis,et al.  Illustration of Sampling‐Based Methods for Uncertainty and Sensitivity Analysis , 2002, Risk analysis : an official publication of the Society for Risk Analysis.

[109]  Jon C. Helton,et al.  Latin Hypercube Sampling and the Propagation of Uncertainty in Analyses of Complex Systems , 2002 .

[110]  J. Charles Kerkering,et al.  Eliciting and Analyzing Expert Judgment, A Practical Guide , 2002, Technometrics.

[111]  D. Cacuci,et al.  SENSITIVITY and UNCERTAINTY ANALYSIS , 2003 .

[112]  R. Cooke Elicitation of expert opinions for uncertainty and risks , 2003 .

[113]  Jon C. Helton,et al.  A distribution-free test for the relationship between model input and output when using Latin hypercube sampling , 2003, Reliab. Eng. Syst. Saf..

[114]  Srikanta Mishra,et al.  Application of classification trees in the sensitivity analysis of probabilistic model results , 2003, Reliab. Eng. Syst. Saf..

[115]  Thomas J. Santner,et al.  The Design and Analysis of Computer Experiments , 2003, Springer Series in Statistics.

[116]  C. Anderson‐Cook Statistical Tools for Nonlinear Regression: a Practical Guide With S-PLUS and R Examples , 2004 .

[117]  Connie M. Borror,et al.  Response Surface Methodology: A Retrospective and Literature Survey , 2004 .

[118]  D. Cacuci,et al.  A Comparative Review of Sensitivity and Uncertainty Analysis of Large-Scale Systems—II: Statistical Methods , 2004 .

[119]  D. Ruppert The Elements of Statistical Learning: Data Mining, Inference, and Prediction , 2004 .

[120]  R. Cooke,et al.  Expert judgement elicitation for risk assessments of critical infrastructures , 2004 .

[121]  B. Ripley,et al.  Semiparametric Regression: Preface , 2003 .

[122]  D. Cacuci,et al.  A Comparative Review of Sensitivity and Uncertainty Analysis of Large-Scale Systems—I: Deterministic Methods , 2004 .

[123]  Jon C. Helton,et al.  A comparison of uncertainty and sensitivity analysis results obtained with random and Latin hypercube sampling , 2005, Reliab. Eng. Syst. Saf..

[124]  A. O'Hagan,et al.  Statistical Methods for Eliciting Probability Distributions , 2005 .

[125]  A. Saltelli,et al.  Sensitivity analysis for chemical models. , 2005, Chemical reviews.

[126]  Michael Andrew Christie,et al.  Error analysis and simulations of complex phenomena , 2005 .

[127]  ' RonaldL.Iman,et al.  An Investigation of Uncertainty and Sensitivity Analysis Techniques for Computer Models , 2006 .

[128]  H Christopher Frey,et al.  Application of classification and regression trees for sensitivity analysis of the Escherichia coli O157:H7 food safety process risk model. , 2006, Journal of food protection.

[129]  Jon C. Helton,et al.  Multiple predictor smoothing methods for sensitivity analysis: Example results , 2008, Reliab. Eng. Syst. Saf..

[130]  J H Maindonald,et al.  Draft of Changes and Additions in a Projected 3rd Edition of Data Analysis and Graphics Using R , 2009 .

[131]  Sonja Kuhnt,et al.  Design and analysis of computer experiments , 2010 .

[132]  D. Sharp,et al.  QMU and Nuclear Weapons Certification What ’ s under the hood ? , 2022 .