Group Sparsity via Implicit Regularization for MIMO Channel Estimation

To compensate for the path losses in millimeter wave (mmWave) communication, multiple-input-multiple-output (MIMO) systems leverage beamforming-based solutions to boost the received SNR. Since beamforming requires knowledge of the wireless channel, its performance is also closely tied with the channel estimation accuracy. In mmWave communication, wireless channels are known to have only a few dominant paths. Several channel estimation methods leverage this characteristic by either using low-rank methods or by modeling element-wise sparsity of channels in angular domain. In this work we propose that the channel in angular domain is better characterized as group sparse rather than element-wise sparse. We further leverage the recent advancements in implicit regularization with gradient descent to develop a non-convex formulation that implicitly enforces group sparsity without additional regularization terms. We further compare the performance of the proposed approach against existing low rank or sparsity based matrix completion methods for channel estimation.

[1]  Jiangtao Xi,et al.  On Matrix Completion-Based Channel Estimators for Massive MIMO Systems , 2019, Symmetry.

[2]  Nathan Srebro,et al.  Kernel and Rich Regimes in Overparametrized Models , 2019, COLT.

[3]  Sanjeev Arora,et al.  Implicit Regularization in Deep Matrix Factorization , 2019, NeurIPS.

[4]  Ahmed Alkhateeb,et al.  DeepMIMO: A Generic Deep Learning Dataset for Millimeter Wave and Massive MIMO Applications , 2019, ArXiv.

[5]  John Thompson,et al.  Massive MIMO Channel Estimation for Millimeter Wave Systems via Matrix Completion , 2018, IEEE Signal Processing Letters.

[6]  Wei Hu,et al.  Algorithmic Regularization in Learning Deep Homogeneous Models: Layers are Automatically Balanced , 2018, NeurIPS.

[7]  Jiangtao Xi,et al.  Robust channel estimation for switch-based mmWave MIMO systems , 2017, 2017 9th International Conference on Wireless Communications and Signal Processing (WCSP).

[8]  Nathan Srebro,et al.  Implicit Regularization in Matrix Factorization , 2017, 2018 Information Theory and Applications Workshop (ITA).

[9]  Jun Fang,et al.  Millimeter Wave Channel Estimation via Exploiting Joint Sparse and Low-Rank Structures , 2017, IEEE Transactions on Wireless Communications.

[10]  Zhi Chen,et al.  Channel Estimation for Millimeter-Wave Multiuser MIMO Systems via PARAFAC Decomposition , 2016, IEEE Transactions on Wireless Communications.

[11]  Robert W. Heath,et al.  Hybrid MIMO Architectures for Millimeter Wave Communications: Phase Shifters or Switches? , 2015, IEEE Access.

[12]  Shahid Mumtaz,et al.  Joint CSIT Acquisition Based on Low-Rank Matrix Completion for FDD Massive MIMO Systems , 2015, IEEE Communications Letters.

[13]  Theodore S. Rappaport,et al.  Millimeter Wave Wireless Communications , 2014 .

[14]  Jeffrey G. Andrews,et al.  What Will 5G Be? , 2014, IEEE Journal on Selected Areas in Communications.

[15]  Robert W. Heath,et al.  Channel Estimation and Hybrid Precoding for Millimeter Wave Cellular Systems , 2014, IEEE Journal of Selected Topics in Signal Processing.

[16]  Theodore S. Rappaport,et al.  Millimeter Wave Channel Modeling and Cellular Capacity Evaluation , 2013, IEEE Journal on Selected Areas in Communications.

[17]  K.M.M. Prabhu,et al.  Window Functions and Their Applications in Signal Processing , 2013 .

[18]  Robert W. Heath,et al.  Spatially Sparse Precoding in Millimeter Wave MIMO Systems , 2013, IEEE Transactions on Wireless Communications.

[19]  U. Johannsen,et al.  Measurement and calibration challenges of microwave and millimeter-wave phased-arrays , 2013, 2013 International Workshop on Antenna Technology (iWAT).

[20]  Alexandre d'Aspremont,et al.  Integration Methods and Optimization Algorithms , 2017, NIPS.

[21]  A. Lozano,et al.  What Will 5 G Be ? , 2014 .

[22]  Douglas Lyon,et al.  The Discrete Fourier Transform, Part 4: Spectral Leakage , 2009, J. Object Technol..