A fast multi-objective evolutionary algorithm based on a tree structure

This paper proposes a fast evolutionary algorithm based on a tree structure for multi-objective optimization. The tree structure, named dominating tree (DT), is able to preserve the necessary Pareto dominance relations among individuals effectively, contains the density information implicitly, and reduces the number of comparisons among individuals significantly. The evolutionary algorithm based on dominating tree (DTEA) integrates the convergence strategy and diversity strategy into the DT and employs a DT-based eliminating strategy that realizes elitism and preserves population diversity without extra time and space costs. Numerical experiments show that DTEA is much faster than SPEA2, NSGA-II and an improved version of NSGA-II, while its solution quality is competitive with those of SPEA2 and NSGA-II.

[1]  Rajeev Kumar,et al.  Improved Sampling of the Pareto-Front in Multiobjective Genetic Optimizations by Steady-State Evolution: A Pareto Converging Genetic Algorithm , 2002, Evolutionary Computation.

[2]  David E. Goldberg,et al.  A niched Pareto genetic algorithm for multiobjective optimization , 1994, Proceedings of the First IEEE Conference on Evolutionary Computation. IEEE World Congress on Computational Intelligence.

[3]  Jonathan E. Fieldsend,et al.  A Multi-Objective Algorithm based upon Particle Swarm Optimisation, an Efficient Data Structure and , 2002 .

[4]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[5]  Gary B. Lamont,et al.  Multiobjective Evolutionary Algorithms: Analyzing the State-of-the-Art , 2000, Evolutionary Computation.

[6]  Yan Li,et al.  A new simple and highly efficient multi-objective optimal evolutionary algorithm , 2003, The 2003 Congress on Evolutionary Computation, 2003. CEC '03..

[7]  Robert Sedgewick,et al.  Algorithms in C++, Parts 1-4: Fundamentals, Data Structure, Sorting, Searching, Third Edition , 1998 .

[8]  Lothar Thiele,et al.  Multiobjective evolutionary algorithms: a comparative case study and the strength Pareto approach , 1999, IEEE Trans. Evol. Comput..

[9]  Jürgen Teich,et al.  Comparison of data structures for storing Pareto-sets in MOEAs , 2002, Proceedings of the 2002 Congress on Evolutionary Computation. CEC'02 (Cat. No.02TH8600).

[10]  Carlos A. Coello Coello,et al.  Evolutionary multi-objective optimization: a historical view of the field , 2006, IEEE Comput. Intell. Mag..

[11]  Manoj Kumar Tiwari,et al.  Multiobjective Particle Swarm Algorithm With Fuzzy Clustering for Electrical Power Dispatch , 2008, IEEE Transactions on Evolutionary Computation.

[12]  Kalyanmoy Deb,et al.  A fast and elitist multiobjective genetic algorithm: NSGA-II , 2002, IEEE Trans. Evol. Comput..

[13]  Thomas Bäck,et al.  Evolutionary algorithms in theory and practice - evolution strategies, evolutionary programming, genetic algorithms , 1996 .

[14]  Tong Heng Lee,et al.  Evolutionary algorithms with dynamic population size and local exploration for multiobjective optimization , 2001, IEEE Trans. Evol. Comput..

[15]  Peter J. Fleming,et al.  An Overview of Evolutionary Algorithms in Multiobjective Optimization , 1995, Evolutionary Computation.

[16]  Marco Laumanns,et al.  PISA: A Platform and Programming Language Independent Interface for Search Algorithms , 2003, EMO.

[17]  Qingfu Zhang,et al.  MOEA/D: A Multiobjective Evolutionary Algorithm Based on Decomposition , 2007, IEEE Transactions on Evolutionary Computation.

[18]  Marco Laumanns,et al.  SPEA2: Improving the strength pareto evolutionary algorithm , 2001 .

[19]  Kalyanmoy Deb,et al.  Simulated Binary Crossover for Continuous Search Space , 1995, Complex Syst..

[20]  Enrique Alba,et al.  AbYSS: Adapting Scatter Search to Multiobjective Optimization , 2008, IEEE Transactions on Evolutionary Computation.

[21]  Thomas Bäck,et al.  Evolutionary Algorithms in Theory and Practice , 1996 .

[22]  Mikkel T. Jensen,et al.  Reducing the run-time complexity of multiobjective EAs: The NSGA-II and other algorithms , 2003, IEEE Trans. Evol. Comput..

[23]  Xin Yao,et al.  Recent Advances in Evolutionary Computation , 2006, Journal of Computer Science and Technology.

[24]  Maoguo Gong,et al.  Multiobjective Immune Algorithm with Nondominated Neighbor-Based Selection , 2008, Evolutionary Computation.

[25]  Lothar Thiele,et al.  Comparison of Multiobjective Evolutionary Algorithms: Empirical Results , 2000, Evolutionary Computation.

[26]  David W. Corne,et al.  Approximating the Nondominated Front Using the Pareto Archived Evolution Strategy , 2000, Evolutionary Computation.

[27]  Xin Yao,et al.  Thermodynamic Pareto optimization of turbojet engines using multi-objective genetic algorithms , 2005 .

[28]  Gary G. Yen,et al.  Dynamic multiobjective evolutionary algorithm: adaptive cell-based rank and density estimation , 2003, IEEE Trans. Evol. Comput..

[29]  Sanyou Zeng,et al.  An Orthogonal Multi-objective Evolutionary Algorithm for Multi-objective Optimization Problems with Constraints , 2004, Evolutionary Computation.

[30]  Robert Sedgewick,et al.  Algorithms in C - parts 1-4: fundamentals, data structures, sorting, searching (3. ed.) , 1997 .

[31]  Qingfu Zhang,et al.  This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION 1 RM-MEDA: A Regularity Model-Based Multiobjective Estimation of , 2022 .

[32]  Pedro M. Mateo,et al.  Representation and management of MOEA populations based on graphs , 2004, Eur. J. Oper. Res..

[33]  Zhongzhi Shi,et al.  An improved multiobjective evolutionary algorithm based on dominating tree , 2006 .

[34]  Kalyanmoy Deb,et al.  Dynamic multiobjective optimization problems: test cases, approximations, and applications , 2004, IEEE Transactions on Evolutionary Computation.

[35]  Marco Laumanns,et al.  Scalable multi-objective optimization test problems , 2002, Proceedings of the 2002 Congress on Evolutionary Computation. CEC'02 (Cat. No.02TH8600).

[36]  Peter J. Fleming,et al.  Multiobjective optimization and multiple constraint handling with evolutionary algorithms. I. A unified formulation , 1998, IEEE Trans. Syst. Man Cybern. Part A.

[37]  Jonathan E. Fieldsend,et al.  Using unconstrained elite archives for multiobjective optimization , 2003, IEEE Trans. Evol. Comput..

[38]  Kalyanmoy Deb,et al.  Muiltiobjective Optimization Using Nondominated Sorting in Genetic Algorithms , 1994, Evolutionary Computation.