The Connectivity Index

Let G be a simple connected graph of order n. The connectivity index R (G) of a graph G is the sum of the weights (d(u)d(v)) of all edges uv of G, where is a real number ( 6 0), and d(u) denotes the degree of the vertex u. In this paper, we present some new bounds for the connectivity index of a graph G in terms of the eigenvalues of the Laplacian matrix or adjacency matrix of the graph G, from which we can get some known results.

[1]  Béla Bollobás,et al.  Graphs of Extremal Weights , 1998, Ars Comb..

[2]  Milan Randic,et al.  Search for useful graph theoretical invariants of molecular structure , 1988, Journal of chemical information and computer sciences.

[3]  M. Hofmeister,et al.  Spectral Radius and Degree Sequence , 1988 .

[4]  Ernesto Estrada Graph Theoretical Invariant of Randic Revisited , 1995, J. Chem. Inf. Comput. Sci..

[5]  M. Randic Characterization of molecular branching , 1975 .

[6]  Ivan Gutman,et al.  Chemical applications of the Laplacian spectrum. VI On the largest Laplacian eigenvalue of alkanes , 2002 .

[7]  R. Stanley A Bound on the Spectral Radius of Graphs with e Edges , 1987 .

[8]  L. Hall,et al.  Molecular connectivity in chemistry and drug research , 1976 .

[9]  Ivan Gutman,et al.  Ordering of alkane isomers by means of connectivity indices , 2002 .

[10]  I. Gutman,et al.  Chemical applications of the Laplacian spectrum. VII. Studies of the Wiener and Kirchhoff indices , 2003 .

[11]  Mirko Lepovic,et al.  Choosing the exponent in the definition of the connectivity index , 2001 .

[12]  I. Gutman,et al.  The largest eigenvalues of adjacency and Laplacian matrices, and ionization potentials of alkanes , 2002 .

[13]  Ernesto Estrada,et al.  Connectivity polynomial and long-range contributions in the molecular connectivity model , 1999 .

[14]  Charles R. Johnson,et al.  Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.