On semi-P4-sparse graphs

Abstract In this paper, we define a graph G as semi- P 4 -sparse if G does not contain as induced subgraph a P 5 , a P 5 or the complement of a fork , where a fork is the tree of order 5 with 3 pendent vertices. This new class of graphs contains strictly the class of P 4 -sparse graphs. Using modular decomposition we first propose a linear recognition algorithm for semi- P 4 -sparse graphs and next, we show that with very little work, we can extend the linear algorithms of Chvatal et al. (1987) concerning the class of perfect graphs that are P 5 , P 5 and C 5 -free, for finding an optimal coloring, a largest clique and a largest stable set of a semi- P 4 -sparse graph G . Finally, we characterize by forbidden configurations the closure by substitution-composition (the inverse operation of modular decomposition) of semi- P 4 -sparse graphs, composition operation of graphs that (among other properties) preserves perfection.

[1]  L. Lovász,et al.  Polynomial Algorithms for Perfect Graphs , 1984 .

[2]  Dominique de Werra,et al.  Four classes of perfectly orderable graphs , 1987, J. Graph Theory.

[3]  Stephan Olariu,et al.  Recognizing P_4 Sparse Graphs in Linear Time , 1992, SIAM J. Comput..

[4]  T. Hiraguchi On the Dimension of Partially Ordered Sets. , 1951 .

[5]  Michel Habib,et al.  A New Linear Algorithm for Modular Decomposition , 1994, CAAP.

[6]  Stephan Olariu,et al.  A tree representation for P4-sparse graphs , 1992, Discret. Appl. Math..

[7]  Andreas Blass,et al.  Graphs with unique maximal clumpings , 1978, J. Graph Theory.

[8]  Derek G. Corneil,et al.  Complement reducible graphs , 1981, Discret. Appl. Math..

[9]  Stephan Olariu,et al.  On the Closure of Triangle-Free Graphs Under Substitution , 1990, Inf. Process. Lett..

[10]  Rolf H. Möhring,et al.  A Fast Algorithm for the Decomposition of Graphs and Posets , 1983, Math. Oper. Res..

[11]  Alfred V. Aho,et al.  The Design and Analysis of Computer Algorithms , 1974 .

[12]  Frederic Maire,et al.  On graphs without P5 and P5_ , 1995, Discret. Math..

[13]  Jeremy P. Spinrad,et al.  P4-Trees and Substitution Decomposition , 1992, Discret. Appl. Math..

[14]  Stephan Olariu,et al.  A Linear-Time Recognition Algorithm for P4-Reducible Graphs , 1989, FSTTCS.

[15]  M. Golumbic Algorithmic graph theory and perfect graphs , 1980 .

[16]  Yehoshua Perl,et al.  Clustering and domination in perfect graphs , 1984, Discret. Appl. Math..

[17]  Jeremy P. Spinrad,et al.  Incremental modular decomposition , 1989, JACM.

[18]  I. Rival Graphs and Order , 1985 .

[19]  Ryan B. Hayward,et al.  Weakly triangulated graphs , 1985, J. Comb. Theory B.

[20]  Jeremy P. Spinrad,et al.  Linear-time modular decomposition and efficient transitive orientation of comparability graphs , 1994, SODA '94.

[21]  J. A. Bondy,et al.  Graph Theory with Applications , 1978 .

[22]  D. Seinsche On a property of the class of n-colorable graphs , 1974 .

[23]  Ronald C. Read,et al.  Graph theory and computing , 1972 .

[24]  Lorna Stewart,et al.  A Linear Recognition Algorithm for Cographs , 1985, SIAM J. Comput..