Application of Bio-inspired Metaheuristics in the Data Clustering Problem

Clustering analysis includes a number of different algorithms and methods for grouping objects by their similar characteristics into categ ories. In recent years, considerable effort has been made to improve such algorithms performance. In this sense, this paper explores three different bio-inspired metaheuristics in the cluste ring problem: Genetic Algorithms (GAs), Ant Colony Optimization (ACO), and Artificial Immune Systems (AIS). This paper proposes some refinements to be applied to these metaheurist ics in order to improve their performance in the data clustering problem. The performance of the proposed algorithms is compared on five different numeric UCI databases. The results s how that GA, ACO and AIS based algorithms are able to efficiently and automaticall y forming natural groups from a pre-defined number of clusters.

[1]  Mukesh M. Raghuwanshi,et al.  Genetic Algorithm Based Clustering: A Survey , 2008, 2008 First International Conference on Emerging Trends in Engineering and Technology.

[2]  Scott Robert Ladd,et al.  Genetic algorithms in C , 1995 .

[3]  Yi Lu,et al.  FGKA: a Fast Genetic K-means Clustering Algorithm , 2004, SAC '04.

[4]  L.N. de Castro,et al.  An artificial immune network for multimodal function optimization , 2002, Proceedings of the 2002 Congress on Evolutionary Computation. CEC'02 (Cat. No.02TH8600).

[5]  Francisco Herrera,et al.  A study on the use of non-parametric tests for analyzing the evolutionary algorithms’ behaviour: a case study on the CEC’2005 Special Session on Real Parameter Optimization , 2009, J. Heuristics.

[6]  Goldberg,et al.  Genetic algorithms , 1993, Robust Control Systems with Genetic Algorithms.

[7]  Jon Timmis,et al.  Data analysis using artificial immune systems, cluster analysis and Kohonen networks: some comparisons , 1999, IEEE SMC'99 Conference Proceedings. 1999 IEEE International Conference on Systems, Man, and Cybernetics (Cat. No.99CH37028).

[8]  Yi Lu,et al.  Incremental genetic K-means algorithm and its application in gene expression data analysis , 2004, BMC Bioinformatics.

[9]  Dervis Karaboga,et al.  A novel clustering approach: Artificial Bee Colony (ABC) algorithm , 2011, Appl. Soft Comput..

[10]  Tao Liu,et al.  A New Clustering Algorithm Based on Artificial Immune System , 2008, 2008 Fifth International Conference on Fuzzy Systems and Knowledge Discovery.

[11]  Jonathan Timmis,et al.  Artificial Immune Systems: A New Computational Intelligence Approach , 2003 .

[12]  OzturkCelal,et al.  A novel clustering approach , 2011 .

[13]  Petra Perner,et al.  Data Mining - Concepts and Techniques , 2002, Künstliche Intell..

[14]  Bidyut Baran Chaudhuri,et al.  A novel genetic algorithm for automatic clustering , 2004, Pattern Recognit. Lett..

[15]  Peter Norvig,et al.  Artificial Intelligence: A Modern Approach , 1995 .

[16]  M. Narasimha Murty,et al.  Genetic K-means algorithm , 1999, IEEE Trans. Syst. Man Cybern. Part B.

[17]  Rui Xu,et al.  Survey of clustering algorithms , 2005, IEEE Transactions on Neural Networks.

[18]  Dan Boneh,et al.  On genetic algorithms , 1995, COLT '95.

[19]  Heikki Mannila,et al.  Principles of Data Mining , 2001, Undergraduate Topics in Computer Science.

[20]  V. Rao Vemuri,et al.  An artificial immune system approach to document clustering , 2005, SAC '05.

[21]  Ujjwal Maulik,et al.  Genetic algorithm-based clustering technique , 2000, Pattern Recognit..

[22]  B. Kulkarni,et al.  An ant colony approach for clustering , 2004 .

[23]  Ying Wu,et al.  Non-Standard Parameter Adaptation for Exploratory Data Analysis , 2009, Studies in Computational Intelligence.

[24]  Katrina D. Maxwell,et al.  Applied Statistics for Software Managers , 2002 .

[25]  Marco Dorigo,et al.  Learning by probabilistic Boolean networks , 1994, Proceedings of 1994 IEEE International Conference on Neural Networks (ICNN'94).

[26]  Aurora Trinidad Ramirez Pozo,et al.  Empirical Studies on Application of Genetic Algorithms and Ant Colony Optimization for Data Clustering , 2010, 2010 XXIX International Conference of the Chilean Computer Science Society.

[27]  Jennifer Bigus,et al.  Constructing intelligent agents using JAVA , 1998 .

[28]  Aurora Pozo,et al.  Mining Rules: A Parallel Multiobjective Particle Swarm Optimization Approach , 2009 .

[29]  Jason Brownlee,et al.  Clonal selection theory and Clonalg: the clonal selection classification algorithm (CSCA) , 2005 .

[30]  Alex Alves Freitas,et al.  A Survey of Evolutionary Algorithms for Clustering , 2009, IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews).

[31]  Kevin Cheng,et al.  An ACO-Based Clustering Algorithm , 2006, ANTS Workshop.

[32]  Leandro Nunes de Castro,et al.  The Clonal Selection Algorithm with Engineering Applications 1 , 2000 .

[33]  Marco Dorigo,et al.  Optimization, Learning and Natural Algorithms , 1992 .

[34]  Fernando José Von Zuben,et al.  An Evolutionary Immune Network for Data Clustering , 2000, SBRN.