Selective metal cation capture by soft anionic metal-organic frameworks via drastic single-crystal-to-single-crystal transformations.

Flexible anionic metal-organic frameworks (MOFs) are transformed into neutral heterobimetallic systems via single-crystal-to-single-crystal processes invoked by cation insertion. These transformations are directed by cooperative bond breakage and formation, resulting in expansion or contraction of the 3D framework by up to 33% due to the flexible nature of the organic linker. These MOFs displays highly selective uptake of divalent transition-metal cations (e.g., Co(2+) and Ni(2+)) over alkali-metal cations (Li(+) and Na(+)).

[1]  J. Atwood,et al.  Flexible metal-organic supramolecular isomers for gas separation. , 2010, Chemical communications.

[2]  J. Atwood,et al.  Flexible (breathing) interpenetrated metal-organic frameworks for CO2 separation applications. , 2008, Journal of the American Chemical Society.

[3]  Cheng Wang,et al.  Actuation of asymmetric cyclopropanation catalysts: reversible single-crystal to single-crystal reduction of metal-organic frameworks. , 2011, Angewandte Chemie.

[4]  Tatsuo C. Kobayashi,et al.  Guest shape-responsive fitting of porous coordination polymer with shrinkable framework. , 2004, Journal of the American Chemical Society.

[5]  J. Vittal,et al.  Solid-state structural transformations from 2D interdigitated layers to 3D interpenetrated structures. , 2011, Angewandte Chemie.

[6]  S. Kitagawa,et al.  A flexible interpenetrating coordination framework with a bimodal porous functionality. , 2007, Nature materials.

[7]  Hong-Cai Zhou,et al.  Gas storage in porous metal-organic frameworks for clean energy applications. , 2010, Chemical communications.

[8]  Xin Wang,et al.  A multifunctional 3D ferroelectric and NLO-active porous metal-organic framework. , 2009, Journal of the American Chemical Society.

[9]  C. Serre,et al.  Different adsorption behaviors of methane and carbon dioxide in the isotypic nanoporous metal terephthalates MIL-53 and MIL-47. , 2005, Journal of the American Chemical Society.

[10]  Hyunuk Kim,et al.  Metathesis in single crystal: complete and reversible exchange of metal ions constituting the frameworks of metal-organic frameworks. , 2009, Journal of the American Chemical Society.

[11]  Kenji Sumida,et al.  Carbon dioxide capture in metal-organic frameworks. , 2012, Chemical reviews.

[12]  T. Uemura,et al.  Gas detection by structural variations of fluorescent guest molecules in a flexible porous coordination polymer. , 2011, Nature materials.

[13]  H. Kitagawa Metal-organic frameworks: Transported into fuel cells. , 2009, Nature chemistry.

[14]  M. P. Suh,et al.  Flexible eightfold interpenetrating diamondoid network generating 1D channels: selective binding with organic guests. , 2005, Inorganic chemistry.

[15]  Tianfu Liu,et al.  Construction of a trigonal bipyramidal cage-based metal-organic framework with hydrophilic pore surface via flexible tetrapodal ligands. , 2010, Chemical communications.

[16]  Tianfu Liu,et al.  New Metal−Organic Framework with Uninodal 4-Connected Topology Displaying Interpenetration, Self-Catenation, and Second-Order Nonlinear Optical Response , 2010 .

[17]  S. Kitagawa,et al.  Soft porous crystals. , 2009, Nature chemistry.

[18]  X. You,et al.  Two unprecedented NLO-active coordination polymers constructed by a semi-rigid tetrahedral linker. , 2010, Dalton transactions.

[19]  Omar M Yaghi,et al.  Strategies for hydrogen storage in metal--organic frameworks. , 2005, Angewandte Chemie.

[20]  C. Serre,et al.  Role of Solvent-Host Interactions That Lead to Very Large Swelling of Hybrid Frameworks , 2007, Science.

[21]  Cameron J Kepert,et al.  Flexible sorption and transformation behavior in a microporous metal-organic framework. , 2002, Journal of the American Chemical Society.

[22]  L. MacGillivray,et al.  A single-crystal-to-single-crystal transformation mediated by argentophilic forces converts a finite metal complex into an infinite coordination network. , 2005, Angewandte Chemie.

[23]  S. Kitagawa,et al.  Flexible microporous coordination polymers , 2005 .

[24]  Daofeng Sun,et al.  Dimerization of a metal complex through thermally induced single-crystal-to-single-crystal transformation or mechanochemical reaction. , 2011, Angewandte Chemie.

[25]  Cheng Wang,et al.  Rational synthesis of noncentrosymmetric metal-organic frameworks for second-order nonlinear optics. , 2012, Chemical reviews.

[26]  C. Serre,et al.  Very large swelling in hybrid frameworks: a combined computational and powder diffraction study. , 2005, Journal of the American Chemical Society.

[27]  J. Lang,et al.  Single-crystal-to-single-crystal transformations of two three-dimensional coordination polymers through regioselective [2+2] photodimerization reactions. , 2010, Angewandte Chemie.

[28]  Jun Liu,et al.  Progress in adsorption-based CO2 capture by metal-organic frameworks. , 2012, Chemical Society reviews.

[29]  Hong-Cai Zhou,et al.  Metal-organic frameworks for separations. , 2012, Chemical reviews.

[30]  Wei‐Xiong Zhang,et al.  Single crystal-to-single crystal transformation from ferromagnetic discrete molecules to a spin-canting antiferromagnetic layer. , 2007, Journal of the American Chemical Society.

[31]  M J Rosseinsky,et al.  Design, chirality, and flexibility in nanoporous molecule-based materials. , 2005, Accounts of chemical research.

[32]  Kimoon Kim,et al.  Rigid and flexible: a highly porous metal-organic framework with unusual guest-dependent dynamic behavior. , 2004, Angewandte Chemie.

[33]  Jinhee Park,et al.  Reversible alteration of CO2 adsorption upon photochemical or thermal treatment in a metal-organic framework. , 2012, Journal of the American Chemical Society.

[34]  S. Kitagawa,et al.  Selective sorption of oxygen and nitric oxide by an electron-donating flexible porous coordination polymer , 2010, Nature Chemistry.

[35]  S. Kitagawa,et al.  A flexible coordination polymer crystal providing reversible structural and magnetic conversions. , 2007, Journal of the American Chemical Society.

[36]  Omar K Farha,et al.  Metal-organic framework materials as chemical sensors. , 2012, Chemical reviews.

[37]  Wenbin Lin,et al.  Enantioselective catalysis with homochiral metal-organic frameworks. , 2009, Chemical Society reviews.

[38]  A. Fletcher,et al.  Flexibility in metal-organic framework materials: impact on sorption properties , 2005 .

[39]  Omar K Farha,et al.  Metal-organic framework materials as catalysts. , 2009, Chemical Society reviews.

[40]  S. Kitagawa,et al.  Soft secondary building unit: dynamic bond rearrangement on multinuclear core of porous coordination polymers in gas media. , 2011, Journal of the American Chemical Society.

[41]  Xiao-Ming Chen,et al.  Exceptional framework flexibility and sorption behavior of a multifunctional porous cuprous triazolate framework. , 2008, Journal of the American Chemical Society.

[42]  M. Kurmoo Magnetic metal-organic frameworks. , 2009, Chemical Society reviews.

[43]  Kumar Biradha,et al.  A springlike 3D-coordination network that shrinks or swells in a crystal-to-crystal manner upon guest removal or readsorption. , 2002, Angewandte Chemie.

[44]  J. Steed,et al.  Tripodal imidazole frameworks: Reversible vapour sorption both with and without significant structural changes. , 2011, Dalton transactions.

[45]  Gérard Férey,et al.  Very Large Breathing Effect in the First Nanoporous Chromium(III)-Based Solids: MIL-53 or CrIII(OH)·{O2C−C6H4−CO2}·{HO2C−C6H4−CO2H}x·H2Oy , 2002 .

[46]  David L. Rogow,et al.  Reversible anion exchange and catalytic properties of two cationic metal-organic frameworks based on Cu(I) and Ag(I). , 2010, Journal of the American Chemical Society.

[47]  K. Chapman,et al.  Dehydration of the nanoporous coordination framework ErIII[CoIII(CN)6].4(H2O): single crystal to single crystal transformation and negative thermal expansion in ErIII[CoIII(CN)6]. , 2006, Chemical communications.

[48]  Gérard Férey,et al.  A rationale for the large breathing of the porous aluminum terephthalate (MIL-53) upon hydration. , 2004, Chemistry.

[49]  T. Bein,et al.  Exceptional ion-exchange selectivity in a flexible open framework lanthanum(III)tetrakisphosphonate. , 2009, Journal of the American Chemical Society.

[50]  M. P. Suh,et al.  Silver(I)−Polynitrile Network Solids for Anion Exchange: Anion-Induced Transformation of Supramolecular Structure in the Crystalline State , 2000 .

[51]  Jian Lü,et al.  Porous anionic, cationic, and neutral metal-carboxylate frameworks constructed from flexible tetrapodal ligands: syntheses, structures, ion-exchanges, and magnetic properties. , 2011, Inorganic chemistry.

[52]  Jian Tian,et al.  Generation of 2D and 3D (PtS, Adamantanoid) Nets with a Flexible Tetrahedral Building Block , 2010 .