Data-Adaptive Wavelets and Multi-Scale SSA

Using multi-scale ideas from wavelet analysis, we extend singular-spectrum analysis (SSA) to the study of nonstationary time series of length N whose intermittency can give rise to the divergence of their variance. The wavelet transform is a kind of local Fourier transform within a finite moving window whose width W , proportional to the major period of interest, is varied to explore a broad range of such periods. SSA, on the other hand, relies on the construction of the lag-covariance matrix C on M lagged copies of the time series over a fixed window width W to detect the regular part of the variability in that window in terms of the minimal number of oscillatory components; here W = M ∆ t , with ∆ t the time step. The proposed multi-scale SSA is a local SSA analysis within a moving window of width M ≤ W ≤ N . Multi-scale SSA varies W , while keeping a fixed W/M ratio, and uses the eigenvectors of the corresponding lag-covariance matrix C M as a data-adaptive wavelets; successive eigenvectors of C M correspond approximately to successive derivatives of the first mother wavelet in standard wavelet analysis. Multi-scale SSA thus solves objectively the delicate problem of optimizing the analyzing wavelet in the time-frequency domain, by a suitable localization of the signal’s covariance matrix. We present several examples of application to synthetic signals with fractal or power-law behavior which mimic selected features of certain climatic and geophysical time series. A real application is to the Southern Oscillation index (SOI) monthly values for 1933–1996. Our methodology highlights an abrupt periodicity shift in the SOI near 1960. This abrupt shift between 4 and 3 years supports the Devil’s staircase scenario for the El Ni˜no/Southern Oscillation phenomenon. 1

[1]  Michael Ghil,et al.  A boolean delay equation model of ENSO variability , 2001 .

[2]  Michael Ghil,et al.  Solving problems with GCMs: General circulation models and their role in the climate modeling hierarchy , 2000 .

[3]  Michael E. Mann,et al.  Interannual Temperature Events and Shifts in Global Temperature: A ''Multiwavelet'' Correlation Approach , 2000 .

[4]  David P. Landau,et al.  Phase transitions and critical phenomena , 1989, Computing in Science & Engineering.

[5]  M. Paluš,et al.  Detecting modes with nontrivial dynamics embedded in colored noise: enhanced Monte Carlo SSA and the case of climate oscillations , 1998 .

[6]  M. Ghil,et al.  Trends, interdecadal and interannual oscillations in global sea-surface temperatures , 1998 .

[7]  S. Mallat,et al.  Adaptive covariance estimation of locally stationary processes , 1998 .

[8]  Michael Ghil,et al.  Recent forecast skill for the El Niño/Southern Oscillation , 1998 .

[9]  D. Sornette Linear stochastic dynamics with nonlinear fractal properties , 1997, cond-mat/9709101.

[10]  D. Sornette,et al.  FINE STRUCTURE AND COMPLEX EXPONENTS IN POWER-LAW DISTRIBUTIONS FROM RANDOM MAPS , 1997, cond-mat/9708220.

[11]  D. Sornette Discrete scale invariance and complex dimensions , 1997, cond-mat/9707012.

[12]  Benoit B. Mandelbrot,et al.  Levy dusts, Mittag-Leffler statistics, mass fractal lacunarity, and perceived dimension , 1997 .

[13]  D. Sornette,et al.  Large financial crashes , 1997, cond-mat/9704127.

[14]  F. Solis,et al.  LACUNARITY OF RANDOM FRACTALS , 1997, cond-mat/9703051.

[15]  Sinisa Pajevic,et al.  Wavelets: An analysis tool , 1997 .

[16]  S. Manabe,et al.  Simulated ENSO in a Global Coupled Ocean–Atmosphere Model: Multidecadal Amplitude Modulation and CO2 Sensitivity , 1997 .

[17]  Rama Cont,et al.  Scale Invariance and Beyond , 1997 .

[18]  C. T. Aricco Advanced Spectral Analysis Methods , 1997 .

[19]  Leonard A. Smith,et al.  Monte Carlo SSA: Detecting irregular oscillations in the Presence of Colored Noise , 1996 .

[20]  Ping Chang,et al.  Chaotic dynamics versus stochastic processes in El Nin˜o-Southern Oscillation in coupled ocean-atmosphere models , 1996 .

[21]  M. Loutre,et al.  Spectral analysis of climate data , 1996 .

[22]  D. Sornette,et al.  Discrete Scaling in Earthquake Precursory Phenomena: Evidence in the Kobe Earthquake, Japan , 1996 .

[23]  D. Sornette,et al.  Convergent Multiplicative Processes Repelled from Zero: Power Laws and Truncated Power Laws , 1996, cond-mat/9609074.

[24]  Yan Wang,et al.  Temporal structure of the southern oscillation as revealed by waveform and wavelet analysis , 1996 .

[25]  Ronald R. Coifman,et al.  The local Karhunen-Loeve bases , 1996, Proceedings of Third International Symposium on Time-Frequency and Time-Scale Analysis (TFTS-96).

[26]  R. Anderson,et al.  Power laws governing epidemics in isolated populations , 1996, Nature.

[27]  W. Peltier,et al.  Phase-transition modulated mixing in the mantle of the Earth , 1996, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[28]  M. Ghil,et al.  Spectral Methods: What They Can and Cannot do for Climatic Time Series , 1996 .

[29]  Jonathan M. Lilly,et al.  Multiwavelet spectral and polarization analyses of seismic records , 1995 .

[30]  Michael Ghil,et al.  Quasi-quadrennial and quasi-biennial variability in the equatorial Pacific , 1995 .

[31]  Michael Ghil,et al.  Interannual and interdecadal variability in United States surface-air temperatures, 1910-87 , 1995 .

[32]  Michael Ghil,et al.  Interannual and interdecadal oscillation patterns in sea level , 1995 .

[33]  Alan S. Willsky,et al.  A Wavelet Packet Approach to Transient Signal Classification , 1995 .

[34]  M. Ghil,et al.  Interannual and Interdecadal Variability in 335 Years of Central England Temperatures , 1995, Science.

[35]  Didier Sornette,et al.  Complex Critical Exponents from Renormalization Group Theory of Earthquakes: Implications for Earthquake Predictions , 1995 .

[36]  S. Philander,et al.  Secular Changes of Annual and Interannual Variability in the Tropics during the Past Century , 1995 .

[37]  Michael Ghil,et al.  Software expedites singular‐spectrum analysis of noisy time series , 1995, Eos, Transactions American Geophysical Union.

[38]  Yan Y. Kagan,et al.  Observational evidence for earthquakes as a nonlinear dynamic process , 1994 .

[39]  Michael Ghil,et al.  Advanced data assimilation in strongly nonlinear dynamical systems , 1994 .

[40]  Eli Tziperman,et al.  El Ni�o Chaos: Overlapping of Resonances Between the Seasonal Cycle and the Pacific Ocean-Atmosphere Oscillator , 1994, Science.

[41]  Pascal Yiou,et al.  Approches de la dynamique du paleoclimat : des donnees et des modeles , 1994 .

[42]  E. Bacry,et al.  BEYOND CLASSICAL MULTIFRACTAL ANALYSIS USING WAVELETS: UNCOVERING A MULTIPLICATIVE PROCESS HIDDEN IN THE GEOMETRICAL COMPLEXITY OF DIFFUSION LIMITED AGGREGATES , 1993 .

[43]  Stéphane Mallat,et al.  Matching pursuits with time-frequency dictionaries , 1993, IEEE Trans. Signal Process..

[44]  Donald B. Percival,et al.  Spectral Analysis for Physical Applications , 1993 .

[45]  L. Mysak,et al.  A Boolean delay equation model of an interdecadal Arctic climate cycle , 1993 .

[46]  Michael Ghil,et al.  Adaptive filtering and prediction of the Southern Oscillation index , 1992 .

[47]  R. Vautard,et al.  Singular-spectrum analysis: a toolkit for short, noisy chaotic signals , 1992 .

[48]  Ingrid Daubechies,et al.  Ten Lectures on Wavelets , 1992 .

[49]  Richard Kronland-Martinet,et al.  Asymptotic wavelet and Gabor analysis: Extraction of instantaneous frequencies , 1992, IEEE Trans. Inf. Theory.

[50]  Ronald R. Coifman,et al.  Entropy-based algorithms for best basis selection , 1992, IEEE Trans. Inf. Theory.

[51]  M. Farge Wavelet Transforms and their Applications to Turbulence , 1992 .

[52]  M. Ghil,et al.  Interdecadal oscillations and the warming trend in global temperature time series , 1991, Nature.

[53]  Michael Ghil,et al.  Nonlinear Dynamics and Predictability in the Atmospheric Sciences , 1991 .

[54]  M. Ghil,et al.  Data assimilation in meteorology and oceanography , 1991 .

[55]  Mladen Victor Wickerhauser,et al.  Lectures On Wavelet Packet Algorithms , 1991 .

[56]  Thomas F. Stocker,et al.  A note on quaternary climate modelling using Boolean delay equations , 1990 .

[57]  E. Rasmusson,et al.  The biennial component of ENSO variability , 1990 .

[58]  R. Vautard,et al.  Singular spectrum analysis in nonlinear dynamics, with applications to paleoclimatic time series , 1989 .

[59]  Michael F. Barnsley,et al.  Fractals everywhere , 1988 .

[60]  Bessis,et al.  Mellin transforms of correlation integrals and generalized dimension of strange sets. , 1987, Physical review. A, General physics.

[61]  Michael Ghil,et al.  Deep water formation and Quaternary glaciations , 1987 .

[62]  S. Childress,et al.  Topics in geophysical fluid dynamics. Atmospheric dynamics, dynamo theory, and climate dynamics. , 1987 .

[63]  G. P. King,et al.  Extracting qualitative dynamics from experimental data , 1986 .

[64]  Klaus Fraedrich,et al.  Estimating the Dimensions of Weather and Climate Attractors , 1986 .

[65]  Michael Ghil,et al.  Boolean delay equations. II. Periodic and aperiodic solutions , 1985 .

[66]  Bernard Derrida,et al.  Oscillatory critical amplitudes in hierarchical models , 1984 .

[67]  Michael Ghil,et al.  Boolean difference equations. I - Formulation and dynamic behavior , 1984 .

[68]  Bernard Derrida,et al.  Fractal structure of zeros in hierarchical models , 1983 .

[69]  D. Thomson,et al.  Spectrum estimation and harmonic analysis , 1982, Proceedings of the IEEE.

[70]  Donald G. Childers,et al.  Modern Spectrum Analysis , 1978 .

[71]  D. Slepian Prolate spheroidal wave functions, fourier analysis, and uncertainty — V: the discrete case , 1978, The Bell System Technical Journal.

[72]  Benoit B. Mandelbrot,et al.  Fractal Geometry of Nature , 1984 .

[73]  J. V. Leeuwen,et al.  Renormalization Theory for Ising Like Spin Systems , 1976 .

[74]  G. Jona-Lasinio The renormalization group: A probabilistic view , 1975 .

[75]  F. R. Gantmakher,et al.  Oszillationsmatrizen, Oszillationskerne und kleine Schwingungen mechanischer Systeme , 1960 .

[76]  Feller William,et al.  An Introduction To Probability Theory And Its Applications , 1950 .

[77]  Dr. M. G. Worster Methods of Mathematical Physics , 1947, Nature.