Computational Intelligence in Astronomy: A Survey

With explosive growth of the astronomical data, astronomy has become a representative data-rich discipline so as to defy traditional research methodologies and paradigm to analyze data and discover new knowledge from the data. How to effectively process and analyze the astronomical data is a fundamental work while a key scientific requirement of modern astronomical surveys. This situation has motivated needs for fostering of a wide range of cooperation with the astronomers and computer scientists. Computational intelligence, an important research direction of artificial intelligence and information sciences, has been shown to be promising to solve complex problems in scientific research and engineering. This paper presents a review of the current state of the application of computational intelligence in astronomy. We believe that computational intelligence is expected to provide powerful tools for addressing challenges in astronomical data analysis.

[1]  H. Zheng-zhong,et al.  Fuzzy set theory applied to CME importance classification , 2003 .

[2]  John A. Nelder,et al.  A Simplex Method for Function Minimization , 1965, Comput. J..

[3]  Chandrika Kamath,et al.  Evolving Neural Networks for the Classification of Galaxies , 2002, GECCO.

[4]  Xin Li,et al.  [A soft discretization method of celestial spectrum characteristic line based on fuzzy C-means clustering]. , 2012, Guang pu xue yu guang pu fen xi = Guang pu.

[5]  LASSIFICATION,et al.  ENSEMBLES OF CLASSIFIERS FOR MORPHOLOGICAL GALAXY CLASSIFICATION , 2001 .

[6]  M. Mayor,et al.  A Jupiter-mass companion to a solar-type star , 1995, Nature.

[7]  L. Shamir,et al.  A Fuzzy Logic Based Algorithm for Finding Astronomical Objects in Wide-Angle Frames , 2005, Publications of the Astronomical Society of Australia.

[8]  Günther R. Raidl,et al.  Determining Orbital Elements of Extrasolar Planets by Evolution Strategies , 2007, EUROCAST.

[9]  Hussein F. Soliman,et al.  Fuzzy logic controller for the electric motor driving the astronomical telescope , 1998, Astronomical Telescopes and Instrumentation.

[10]  Tan Yang,et al.  An autoencoder of stellar spectra and its application in automatically estimating atmospheric parameters , 2015, 1508.00338.

[11]  Han Jin-shu Parameter Estimation of Stellar Population Synthesis Using A Combined Genetic Algorithm , 2015 .

[12]  Ben Hoyle,et al.  Measuring photometric redshifts using galaxy images and Deep Neural Networks , 2015, Astron. Comput..

[13]  S. Burke-Spolaor,et al.  The High Time Resolution Universe Pulsar Survey - III. Single-pulse searches and preliminary analysis , 2011, 1102.4111.

[14]  ACCEPTED FOR PUBLICATION IN THE ASTRONOMICAL JOURNAL Preprint typeset using L ATEX style emulateapj GENETIC-ALGORITHM-BASED LIGHT CURVE OPTIMIZATION APPLIED TO OBSERVATIONS OF THE , 1999 .

[15]  K. Revathy,et al.  Fractal-Based Fuzzy Technique For Detection Of Active Regions From Solar Images , 2005 .

[16]  Xavier Lladó,et al.  A review of source detection approaches in astronomical images , 2012 .

[17]  Barnabás Póczos,et al.  Enabling Dark Energy Science with Deep Generative Models of Galaxy Images , 2016, AAAI.

[18]  A. J. Connolly,et al.  REDUCING THE DIMENSIONALITY OF DATA: LOCALLY LINEAR EMBEDDING OF SLOAN GALAXY SPECTRA , 2009, 0907.2238.

[19]  F. Marchis,et al.  Determination of binary asteroid orbits with a genetic-based algorithm , 2012 .

[20]  M. Druckmüller,et al.  A NOISE ADAPTIVE FUZZY EQUALIZATION METHOD FOR PROCESSING SOLAR EXTREME ULTRAVIOLET IMAGES , 2013 .

[21]  W. Waniak,et al.  Removing cosmic-ray hits from CCD images in real-time mode by means of an artificial neural network , 2007 .

[22]  Ping Guo,et al.  A Novel Approach to Stellar Recognition by Combining EKF and RBF Net , 2004, ISNN.

[23]  L. Shamir,et al.  A fuzzy logic‐based algorithm for cosmic‐ray hit rejection from single images , 2005 .

[24]  Harinder P. Singh,et al.  Stellar spectral classification using principal component analysis and artificial neural networks , 1998 .

[25]  Bin Zi,et al.  Analysis and control of the cable-supporting system including actuator dynamics , 2011 .

[26]  Kirk D. Borne A machine learning classification broker for the LSST transient database , 2008 .

[27]  Antonio Mampaso,et al.  Automatic spectral classification of stellar spectra with low signal-to-noise ratio using artificial neural networks , 2012 .

[28]  Su Yu FUZZY MODEL REFERENCE LEARNING FOR TRACKING CONTROL OF LARGE RADIO TELESCOPE , 2002 .

[29]  Daniel George,et al.  Deep Neural Networks to Enable Real-time Multimessenger Astrophysics , 2016, ArXiv.

[30]  F. Camilo,et al.  The Parkes multi-beam pulsar survey - I. Observing and data analysis systems, discovery and timing of 100 pulsars , 2001, astro-ph/0106522.

[31]  D. Eisenstein,et al.  Deriving Photometric Redshifts using Fuzzy Archetypes and Self-Organizing Maps. I. Methodology , 2015, 1510.08073.

[32]  Carlos Dafonte,et al.  Parameterization of RVS synthetic stellar spectra for the ESA Gaia mission: Study of the optimal domain for ANN training , 2010, Expert Syst. Appl..

[33]  Yunde Jia,et al.  A study of regularized Gaussian classifier in high-dimension small sample set case based on MDL principle with application to spectrum recognition , 2008, Pattern Recognit..

[34]  Ping Guo,et al.  Automated Stellar Classification for Large Surveys with EKF and RBF Neural Networks , 2005 .

[35]  Edward J. Kim,et al.  A Hybrid Ensemble Learning Approach to Star-Galaxy Classification , 2015, 1505.02200.

[36]  O. Lahav,et al.  ANNz: Estimating Photometric Redshifts Using Artificial Neural Networks , 2003, astro-ph/0311058.

[37]  William Wilson Morgan,et al.  Fundamental stellar photometry for standards of spectral type on the revised system of the Yerkes spectral atlas , 1953 .

[38]  Di Li,et al.  The Five-hundred-meter Aperture Spherical radio Telescope (FAST) project , 2011, 2015 International Topical Meeting on Microwave Photonics (MWP).

[39]  O. Fuentes,et al.  Machine learning and image analysis for morphological galaxy classification , 2004 .

[40]  M. Wahde Determination of orbital parameters of interacting galaxies using a genetic algorithm - Description of the method and application to artificial data , 1997, astro-ph/9710278.

[41]  Ping Guo,et al.  [Stellar spectral recognition based on wavelet de-noising and SVM]. , 2006, Guang pu xue yu guang pu fen xi = Guang pu.

[42]  Canada.,et al.  Data Mining and Machine Learning in Astronomy , 2009, 0906.2173.

[43]  O. Lahav,et al.  Morphological Classification of galaxies by Artificial Neural Networks , 1992 .

[44]  S. Márka,et al.  Prospects of gravitational wave data mining and exploration via evolutionary computing , 2006 .

[45]  Zhong-bao Liu,et al.  [Study on Stellar Spectral Outliers Mining Based on Fuzzy Large Margin and Minimum Ball Classification Model]. , 2016, Guang pu xue yu guang pu fen xi = Guang pu.

[46]  G. Meylan,et al.  Hopfield neural network deconvolution for weak lensing measurement , 2014, 1411.3193.

[47]  Vinesh Rajpaul,et al.  Genetic algorithms in astronomy and astrophysics , 2012, ArXiv.

[48]  Ping Guo,et al.  A new automated spectral feature extraction method and its application in spectral classification and defective spectra recovery , 2017 .

[49]  Ping Guo,et al.  Classification of Stellar Spectral Data Using SVM , 2004, ISNN.

[50]  A. Naim,et al.  Automated morphological classification of APM galaxies by supervised artificial neural networks , 1995, astro-ph/9503001.

[51]  Structural Properties of Pulsating Star Light Curves Through Fuzzy Divisive Hierarchical Clustering , 1997 .

[52]  Abdel-Fattah Attia Adapted Fuzzy Controller for Astronomical Telescope Tracking , 2004 .

[53]  Yanxia Zhang,et al.  Morphology classification and photometric redshift measurement of galaxies , 2008, 0810.0867.

[54]  C. Lintott,et al.  Galaxy Zoo: reproducing galaxy morphologies via machine learning★ , 2009, 0908.2033.

[55]  C. Flynn,et al.  SPINN: a straightforward machine learning solution to the pulsar candidate selection problem , 2014, 1406.3627.

[56]  Ping Guo Spectral pattern recognition with regularized Gaussian classifier , 2003, International Conference on Neural Networks and Signal Processing, 2003. Proceedings of the 2003.

[57]  Michigan.,et al.  Estimating photometric redshifts with artificial neural networks , 2002, astro-ph/0203250.

[58]  M. Wahde,et al.  Determination of the orbital parameters of the M 51 system using a genetic algorithm , 2001 .

[59]  J. Cordes,et al.  Genetic Algorithms: Searching for Planets Around Pulsars , 1995 .

[60]  S. Odewahn,et al.  Automated star/galaxy discrimination with neural networks , 1992 .

[61]  J. Angel,et al.  Adaptive optics for array telescopes using neural-network techniques , 1990, Nature.

[62]  Yu-Gang Jiang,et al.  Stellar spectral feature extraction and combination analysis for classification with ENN , 2005, 2005 International Conference on Machine Learning and Cybernetics.

[63]  Coryn A.L. Bailer-Jones Stellar parameters from very low resolution spectra and medium band filters Te , log g and (M/H) using neural networks , 2000 .

[64]  S. Okamura,et al.  Galaxy types in the Sloan Digital Sky survey using supervised artificial neural networks , 2003, astro-ph/0306390.

[65]  C. Bonnett Using neural networks to estimate redshift distributions. An application to CFHTLenS , 2013, 1312.1287.

[66]  C. Theis Modeling Encounters of Galaxies: The Case of NGC4449 , 1999, astro-ph/9907237.

[67]  C. Migaszewski,et al.  Modeling the Radial Velocities of HD 240210 with the Genetic Algorithms , 2010, 1007.0029.

[68]  F. Freistetter Fuzzy characterization of near-earth-asteroids , 2009 .

[69]  Ping Guo,et al.  Spectral Analysis and Recognition Using Multi-scale Features and Neural Networks , 2004, ISNN.

[70]  Wm. Bruce Weaver,et al.  Accurate Two-Dimensional Classification of Stellar Spectra with Artificial Neural Networks , 1997 .

[71]  Carlos Dafonte,et al.  ANNs and Wavelets: A Strategy for Gaia RVS Low S/N Stellar Spectra Parameterization , 2010 .

[72]  B. Yanny,et al.  Star/galaxy separation at faint magnitudes: application to a simulated Dark Energy Survey , 2013, 1306.5236.

[73]  Ping Guo,et al.  Mixture of Experts for Stellar Data Classification , 2005, ISNN.

[74]  Muhammad Ushaq,et al.  A robust data fusion scheme for integrated navigation systems employing fault detection methodology augmented with fuzzy adaptive filtering , 2013, Precision Mechanical Measurements.

[75]  J. Gunn,et al.  The Sloan Digital Sky Survey , 1994, astro-ph/9412080.

[76]  Ted von Hippel,et al.  Automated classification of stellar spectra - II. Two-dimensional classification with neural networks and principal components analysis , 1998, astro-ph/9803050.

[77]  M. C. Storrie-Lombardi,et al.  Automated classification of stellar spectra - I. Initial results with artificial neural networks , 1994 .

[78]  Sander Dieleman,et al.  Rotation-invariant convolutional neural networks for galaxy morphology prediction , 2015, ArXiv.

[79]  S. Burke-Spolaor,et al.  The High Time Resolution Universe Pulsar Survey - VI. An artificial neural network and timing of 75 pulsars , 2012, 1209.0793.

[80]  Edward J. Kim,et al.  Star-galaxy Classification Using Deep Convolutional Neural Networks , 2016, ArXiv.

[81]  G. Wegner The double galaxy cluster Abell 2465 – I. Basic properties: optical imaging and spectroscopy , 2011, 1101.1451.

[82]  Andrew J. Connolly,et al.  CLASSIFICATION OF STELLAR SPECTRA WITH LOCAL LINEAR EMBEDDING , 2011 .

[83]  V. Narayanan,et al.  Spectroscopic Target Selection in the Sloan Digital Sky Survey: The Main Galaxy Sample , 2002, astro-ph/0206225.

[84]  Otto H. Bauer,et al.  Automatic Solar Flare Detection Using Neural Network Techniques , 2002 .

[85]  Zhong-bao Liu,et al.  [Automatic classification method of star spectra data based on manifold fuzzy twin support vector machine]. , 2015, Guang pu xue yu guang pu fen xi = Guang pu.

[86]  Abdel-Fattah Attia,et al.  Hierarchical fuzzy controllers for an astronomical telescope tracking , 2009, Appl. Soft Comput..

[87]  Petri Mähönen,et al.  Automated Star-Galaxy Discrimination for Large Surveys , 2001 .

[88]  John J. Oh,et al.  Deep Neural Networks for identifying noise transients in Gravitational-Wave Detectors , 2015 .

[89]  F. Camilo,et al.  Discovery of 28 pulsars using new techniques for sorting pulsar candidates , 2009, 0901.3570.

[90]  D. Bazell Feature relevance in morphological galaxy classification , 2000 .

[91]  R. P. Eatough,et al.  Selection of radio pulsar candidates using artificial neural networks , 2010, 1005.5068.

[92]  Andreu Balastegui,et al.  Reclassification of gamma-ray bursts , 2001 .

[93]  Santiago,et al.  A CATALOG OF VISUAL-LIKE MORPHOLOGIES IN THE 5 CANDELS FIELDS USING DEEP LEARNING , 2015, 1509.05429.

[94]  S. Andreon,et al.  Wide field imaging – I. Applications of neural networks to object detection and star/galaxy classification , 2000, astro-ph/0006115.

[95]  M. J. Coe,et al.  Star/galaxy classification using Kohonen self-organizing maps , 1996 .

[96]  E. Eberbach Toward a theory of evolutionary computation. , 2005, Bio Systems.

[97]  Ravi K. Gulati,et al.  A COMPARISON OF SYNTHETIC AND OBSERVED SPECTRA FOR G-K DWARFS USING ARTIFICIAL NEURAL NETWORKS , 1997 .

[98]  Farhan Feroz,et al.  SKYNET: an efficient and robust neural network training tool for machine learning in astronomy , 2013, ArXiv.

[99]  B. Garilli,et al.  The bimodality of the 10k zCOSMOS-bright galaxies up to z ~ 1: a new statistical and portable classification based on optical galaxy properties , 2010, 1009.0723.

[100]  Ajit Kembhavi,et al.  A difference boosting neural network for automated star-galaxy classification , 2002 .

[101]  Shuang Li,et al.  Rapid design and optimization of low-thrust rendezvous/interception trajectory for asteroid deflection missions , 2014 .

[102]  Ping Guo,et al.  Pulsar Candidate Identification with Artificial Intelligence Techniques , 2017, ArXiv.

[103]  Shu-rong Zhou,et al.  The fuzzy forecast of the activity of solar active regions , 2002 .

[104]  Raffaele D'Abrusco,et al.  Astroinformatics of galaxies and quasars: a new general method for photometric redshifts estimation , 2011, 1107.3160.

[105]  T. Lazio GENETIC ALGORITHMS, PULSAR PLANETS, AND IONIZED INTERSTELLAR MICROTURBULENCE , 1997 .

[106]  Royal Greenwich Observatory,et al.  Physical parametrization of stellar spectra: the neural network approach , 1997 .

[107]  G. Spiekermann Automated Morphological Classification of Faint Galaxies , 1992 .

[108]  Alejandra Rodríguez,et al.  STARMIND: A FUZZY LOGIC KNOWLEDGE-BASED SYSTEM FOR THE AUTOMATED CLASSIFICATION OF STARS IN THE MK SYSTEM , 2009 .

[109]  Guo Ping A Novel Method for Spectral Signal Pattern Recognition , 2003 .