Structural Presburger digit vector automata

The least significant digit first decomposition of integer vectors into words of digit vectors provides a natural way for representing sets of integer vectors by automata. In this paper, the minimal automata representing Presburger sets are proved structurally Presburger: automata obtained by moving the initial state and replacing the accepting condition represent Presburger sets.

[1]  Laure Petrucci,et al.  FAST: Fast Acceleration of Symbolikc Transition Systems , 2003, CAV.

[2]  Jérôme Leroux The Affine Hull of a Binary Automaton is Computable in Polynomial Time , 2003, INFINITY.

[3]  Tevfik Bultan,et al.  Efficient Symbolic Representations for Arithmetic Constraints in Verification , 2003, Int. J. Found. Comput. Sci..

[4]  F. Klaedtke On the automata size for Presburger arithmetic , 2004, LICS 2004.

[5]  Andrej Muchnik The definable criterion for definability in Presburger arithmetic and its applications , 2003, Theor. Comput. Sci..

[6]  Hubert Comon-Lundh,et al.  Diophantine Equations, Presburger Arithmetic and Finite Automata , 1996, CAAP.

[7]  C. Michaux,et al.  LOGIC AND p-RECOGNIZABLE SETS OF INTEGERS , 1994 .

[8]  Andrei Voronkov,et al.  BRAIN : Backward Reachability Analysis with Integers , 2002, AMAST.

[9]  Pierre Wolper,et al.  An Automata-Theoretic Approach to Presburger Arithmetic Constraints (Extended Abstract) , 1995, SAS.

[10]  Jérôme Leroux,et al.  A polynomial time Presburger criterion and synthesis for number decision diagrams , 2005, 20th Annual IEEE Symposium on Logic in Computer Science (LICS' 05).

[11]  Tevfik Bultan,et al.  Widening Arithmetic Automata , 2004, CAV.

[12]  Achim Blumensath,et al.  Finite Presentations of Infinite Structures: Automata and Interpretations , 2004, Theory of Computing Systems.

[13]  Pierre Wolper,et al.  On the Construction of Automata from Linear Arithmetic Constraints , 2000, TACAS.

[14]  S. Ginsburg,et al.  Semigroups, Presburger formulas, and languages. , 1966 .

[15]  Bernard Boigelot Symbolic Methods for Exploring Infinite State Spaces , 1998 .

[16]  A. Kasher Review: Seymour Ginsburg, Edwin H. Spanier, Semigroups, Presburger Formulas, and Languages , 1969 .

[17]  David L. Dill,et al.  Deciding Presburger Arithmetic by Model Checking and Comparisons with Other Methods , 2002, FMCAD.