Model-based Visual Tracking: The OpenTL Framework

This book has two main goals: to provide a unifed and structured overview of thisgrowing field, as well as to propose a corresponding software framework, the OpenTL library, developed by the author and his working group at TUM-Informatik.The mainobjective of this work is to show, how most real-world application scenarios can be naturally cast into a common description vocabulary, and therefore implemented and tested in a fully modular and scalable way, through the defnition of a layered, object-oriented software architecture.The resulting architecture covers in a seamless way all processing levels, from raw data acquisition up to model-based object detection and sequential localization, and defines, at the application level, what we call the tracking pipeline. Within this framework, extensive use of graphics hardware (GPU computing) as well as distributed processing, allows real-time performances for complex models and sensory systems.

[1]  Luc Van Gool,et al.  GPU-Based Foreground-Background Segmentation using an Extended Colinearity Criterion , 2005 .

[2]  Farzin Mokhtarian,et al.  A Theory of Multiscale, Curvature-Based Shape Representation for Planar Curves , 1992, IEEE Trans. Pattern Anal. Mach. Intell..

[3]  Zhengyou Zhang,et al.  A Flexible New Technique for Camera Calibration , 2000, IEEE Trans. Pattern Anal. Mach. Intell..

[4]  Roberto Cipolla,et al.  Real-Time Visual Tracking of Complex Structures , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[5]  J. Schanda,et al.  Colorimetry : understanding the CIE system , 2007 .

[6]  Jeffrey K. Uhlmann,et al.  New extension of the Kalman filter to nonlinear systems , 1997, Defense, Security, and Sensing.

[7]  Aaron Hertzmann,et al.  Illustrating smooth surfaces , 2000, SIGGRAPH.

[8]  David G. Lowe,et al.  What and Where: 3D Object Recognition with Accurate Pose , 2006, Toward Category-Level Object Recognition.

[9]  Selim Benhimane,et al.  Homography-based 2D Visual Tracking and Servoing , 2007, Int. J. Robotics Res..

[10]  Paul L. Rosin Measuring shape: ellipticity, rectangularity, and triangularity , 2000, Proceedings 15th International Conference on Pattern Recognition. ICPR-2000.

[11]  Zhengyou Zhang,et al.  Flexible camera calibration by viewing a plane from unknown orientations , 1999, Proceedings of the Seventh IEEE International Conference on Computer Vision.

[12]  J. Sethian,et al.  Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations , 1988 .

[13]  James W. Davis,et al.  The representation and recognition of human movement using temporal templates , 1997, Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[14]  T. Başar,et al.  A New Approach to Linear Filtering and Prediction Problems , 2001 .

[15]  Vincent Lepetit,et al.  Monocular Model-based 3d Tracking of Rigid Objects (Foundations and Trends in Computer Graphics and Vision(R)) , 2005 .

[16]  Matthijs C. Dorst Distinctive Image Features from Scale-Invariant Keypoints , 2011 .

[17]  Matthew A. Brown,et al.  Invariant Features from Interest Point Groups , 2002, BMVC.

[18]  Robert C. Bolles,et al.  Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography , 1981, CACM.

[19]  Dana H. Ballard,et al.  Generalizing the Hough transform to detect arbitrary shapes , 1981, Pattern Recognit..

[20]  Dorin Comaniciu,et al.  Mean Shift: A Robust Approach Toward Feature Space Analysis , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[21]  Alois Knoll,et al.  Real-Time 3D Face Tracking with Mutual Information and Active Contours , 2007, ISVC.

[22]  Geraldo F. Silveira,et al.  Real-time Visual Tracking under Arbitrary Illumination Changes , 2007, 2007 IEEE Conference on Computer Vision and Pattern Recognition.

[23]  David G. Lowe,et al.  Local feature view clustering for 3D object recognition , 2001, Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR 2001.

[24]  Paul A. Viola,et al.  Robust Real-Time Face Detection , 2001, Proceedings Eighth IEEE International Conference on Computer Vision. ICCV 2001.

[25]  Luc Van Gool,et al.  Speeded-Up Robust Features (SURF) , 2008, Comput. Vis. Image Underst..

[26]  David G. Lowe,et al.  Shape indexing using approximate nearest-neighbour search in high-dimensional spaces , 1997, Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[27]  Gary Bradski,et al.  Computer Vision Face Tracking For Use in a Perceptual User Interface , 1998 .

[28]  Simon Baker,et al.  Active Appearance Models Revisited , 2004, International Journal of Computer Vision.

[29]  Daniel P. Huttenlocher,et al.  Distance Transforms of Sampled Functions , 2012, Theory Comput..

[30]  Kenneth Levenberg A METHOD FOR THE SOLUTION OF CERTAIN NON – LINEAR PROBLEMS IN LEAST SQUARES , 1944 .

[31]  David G. Lowe,et al.  Perceptual organization and visual recognition /David G.lowe , 1987 .

[32]  Wolfram Burgard,et al.  Probabilistic Robotics (Intelligent Robotics and Autonomous Agents) , 2005 .

[33]  F. Daum,et al.  Handbook of multisensor data fusion [Book Review] , 2001, IEEE Aerospace and Electronic Systems Magazine.

[34]  Tom Heskes,et al.  Expectation Propogation for Approximate Inference in Dynamic Bayesian Networks , 2002, UAI.

[35]  Christopher G. Harris,et al.  A Combined Corner and Edge Detector , 1988, Alvey Vision Conference.

[36]  Jeffrey K. Uhlmann,et al.  Corrections to "Unscented Filtering and Nonlinear Estimation" , 2004, Proc. IEEE.

[37]  Whoi-Yul Kim,et al.  A region-based shape descriptor using Zernike moments , 2000, Signal Process. Image Commun..

[38]  Josef Kittler,et al.  Robust and Efficient Shape Indexing through Curvature Scale Space , 1996, BMVC.

[39]  Takeo Kanade,et al.  An Iterative Image Registration Technique with an Application to Stereo Vision , 1981, IJCAI.

[40]  Michael Beetz,et al.  The Contracting Curve Density Algorithm: Fitting Parametric Curve Models to Images Using Local Self-Adapting Separation Criteria , 2004, International Journal of Computer Vision.

[41]  Til Aach,et al.  Illumination-invariant change detection , 2000, 4th IEEE Southwest Symposium on Image Analysis and Interpretation.

[42]  Hans-Hellmut Nagel,et al.  Model-based object tracking in monocular image sequences of road traffic scenes , 1993, International Journal of Computer 11263on.

[43]  S. Umeyama,et al.  Least-Squares Estimation of Transformation Parameters Between Two Point Patterns , 1991, IEEE Trans. Pattern Anal. Mach. Intell..

[44]  Massimo Piccardi,et al.  Background subtraction techniques: a review , 2004, 2004 IEEE International Conference on Systems, Man and Cybernetics (IEEE Cat. No.04CH37583).

[45]  Lawrence D. Stone,et al.  Bayesian Multiple Target Tracking , 1999 .

[46]  Harry Shum,et al.  Image-based rendering , 2006, Found. Trends Comput. Graph. Vis..

[47]  Jeff A. Bilmes,et al.  A gentle tutorial of the em algorithm and its application to parameter estimation for Gaussian mixture and hidden Markov models , 1998 .

[48]  Chris Harris,et al.  Tracking with rigid models , 1993 .

[49]  Bernhard P. Wrobel,et al.  Multiple View Geometry in Computer Vision , 2001 .

[50]  Farzin Mokhtarian,et al.  An Efficient Active Contour Model Through Curvature Scale Space Filtering , 2004, Multimedia Tools and Applications.

[51]  Haim J. Wolfson,et al.  Geometric hashing: an overview , 1997 .

[52]  R. Weale Vision. A Computational Investigation Into the Human Representation and Processing of Visual Information. David Marr , 1983 .

[53]  Simon Baker,et al.  Lucas-Kanade 20 Years On: A Unifying Framework , 2004, International Journal of Computer Vision.

[54]  D. Marquardt An Algorithm for Least-Squares Estimation of Nonlinear Parameters , 1963 .

[55]  David G. Lowe,et al.  Three-Dimensional Object Recognition from Single Two-Dimensional Images , 1987, Artif. Intell..

[56]  J. Lander Shades of disney: Opaquing a 3d world , 2000 .

[57]  Yoav Freund,et al.  A Short Introduction to Boosting , 1999 .

[58]  Michael Isard,et al.  ICONDENSATION: Unifying Low-Level and High-Level Tracking in a Stochastic Framework , 1998, ECCV.

[59]  Patrick Bouthemy,et al.  A Maximum Likelihood Framework for Determining Moving Edges , 1989, IEEE Trans. Pattern Anal. Mach. Intell..

[60]  Roberto Cipolla,et al.  Visual tracking and control using Lie algebras , 1999, Proceedings. 1999 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Cat. No PR00149).

[61]  Simon Baker,et al.  Equivalence and efficiency of image alignment algorithms , 2001, Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR 2001.

[62]  Alois Knoll,et al.  Mutual Information-Based 3D Object Tracking , 2008, International Journal of Computer Vision.

[63]  Richard O. Duda,et al.  Use of the Hough transformation to detect lines and curves in pictures , 1972, CACM.

[64]  Ming-Kuei Hu,et al.  Visual pattern recognition by moment invariants , 1962, IRE Trans. Inf. Theory.

[65]  Xiaodong Wang,et al.  Decentralized sigma-point information filters for target tracking in collaborative sensor networks , 2005, IEEE Transactions on Signal Processing.

[66]  Vincent Lepetit,et al.  Stable real-time 3D tracking using online and offline information , 2004, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[67]  Rudolph van der Merwe,et al.  The Unscented Kalman Filter , 2002 .