Strong Local Optimality for a Bang-Bang Trajectory in a Mayer Problem

This paper gives sufficient conditions for a class of bang-bang extremals with multiple switches to be locally optimal in the strong topology. The conditions are the natural generalizations of those considered in [A. A. Agrachev, G. Stefani, and P. Zezza, SIAM J. Control Optim., 41 (2002), pp. 991-1014], [L. Poggiolini, Rend. Semin. Mat. Univ. Politec. Torino, 64 (2006), pp. 1-23], and [L. Poggiolini and G. Stefani, Systems Control Lett., 53 (2004), pp. 269-279]. We require both the strict bang-bang Legendre condition and the second order conditions for the finite dimensional problem obtained by moving the switching times of the reference trajectory.

[1]  Gianna Stefani,et al.  Sufficient optimality conditions for a bang-bang trajectory , 2006, CDC.

[2]  Helmut Maurer,et al.  Second order optimality conditions for bang-bang control problems , 2003 .

[3]  Gianna Stefani,et al.  Control and Cybernetics Optimality and Stability Result for Bang–bang Optimal Controls with Simple and Double Switch Behaviour * † , 2022 .

[4]  J. Milnor Topology from the differentiable viewpoint , 1965 .

[5]  A. Agrachev,et al.  SYMPLECTIC METHODS FOR OPTIMIZATION AND CONTROL , 1999 .

[6]  Laura Poggiolini,et al.  Bang-bang trajectories with a double switching time: sufficient strong local optimality conditions , 2010, ArXiv.

[7]  Andrei V. Sarychev,et al.  First- and Second-Order Sufficient Optimality Conditions for Bang-Bang Controls , 1997 .

[8]  A. Agrachev,et al.  Control Theory from the Geometric Viewpoint , 2004 .

[9]  F. Clarke Optimization And Nonsmooth Analysis , 1983 .

[10]  Gianna Stefani,et al.  Strong Optimality for a Bang-Bang Trajectory , 2002, SIAM J. Control. Optim..

[11]  M. Hestenes Applications of the theory of quadratic forms in Hilbert space to the calculus of variations. , 1951 .

[12]  Gianna Stefani,et al.  State-local optimality of a bang-bang trajectory: a Hamiltonian approach , 2004, Syst. Control. Lett..

[13]  L. Poggiolini ON LOCAL STATE OPTIMALITY OF BANG-BANG EXTREMAL , 2022 .

[14]  Jong-Shi Pang,et al.  Piecewise Smoothness, Local Invertibility, and Parametric Analysis of Normal Maps , 1996, Math. Oper. Res..

[15]  S. Scholtes,et al.  Structural Analysis of Nonsmooth Mappings, Inverse Functions, and Metric Projections , 1994 .

[16]  Gianna Stefani,et al.  An invariant second variation in optimal control , 1998 .