Strong Local Optimality for a Bang-Bang Trajectory in a Mayer Problem
暂无分享,去创建一个
[1] Gianna Stefani,et al. Sufficient optimality conditions for a bang-bang trajectory , 2006, CDC.
[2] Helmut Maurer,et al. Second order optimality conditions for bang-bang control problems , 2003 .
[3] Gianna Stefani,et al. Control and Cybernetics Optimality and Stability Result for Bang–bang Optimal Controls with Simple and Double Switch Behaviour * † , 2022 .
[4] J. Milnor. Topology from the differentiable viewpoint , 1965 .
[5] A. Agrachev,et al. SYMPLECTIC METHODS FOR OPTIMIZATION AND CONTROL , 1999 .
[6] Laura Poggiolini,et al. Bang-bang trajectories with a double switching time: sufficient strong local optimality conditions , 2010, ArXiv.
[7] Andrei V. Sarychev,et al. First- and Second-Order Sufficient Optimality Conditions for Bang-Bang Controls , 1997 .
[8] A. Agrachev,et al. Control Theory from the Geometric Viewpoint , 2004 .
[9] F. Clarke. Optimization And Nonsmooth Analysis , 1983 .
[10] Gianna Stefani,et al. Strong Optimality for a Bang-Bang Trajectory , 2002, SIAM J. Control. Optim..
[11] M. Hestenes. Applications of the theory of quadratic forms in Hilbert space to the calculus of variations. , 1951 .
[12] Gianna Stefani,et al. State-local optimality of a bang-bang trajectory: a Hamiltonian approach , 2004, Syst. Control. Lett..
[13] L. Poggiolini. ON LOCAL STATE OPTIMALITY OF BANG-BANG EXTREMAL , 2022 .
[14] Jong-Shi Pang,et al. Piecewise Smoothness, Local Invertibility, and Parametric Analysis of Normal Maps , 1996, Math. Oper. Res..
[15] S. Scholtes,et al. Structural Analysis of Nonsmooth Mappings, Inverse Functions, and Metric Projections , 1994 .
[16] Gianna Stefani,et al. An invariant second variation in optimal control , 1998 .