Holonomic Quantum Control with Continuous Variable Systems.

Universal computation of a quantum system consisting of superpositions of well-separated coherent states of multiple harmonic oscillators can be achieved by three families of adiabatic holonomic gates. The first gate consists of moving a coherent state around a closed path in phase space, resulting in a relative Berry phase between that state and the other states. The second gate consists of "colliding" two coherent states of the same oscillator, resulting in coherent population transfer between them. The third gate is an effective controlled-phase gate on coherent states of two different oscillators. Such gates should be realizable via reservoir engineering of systems that support tunable nonlinearities, such as trapped ions and circuit QED.

[1]  L. Davidovich,et al.  Decoherence, pointer engineering, and quantum state protection. , 2001, Physical review letters.

[2]  Paolo Zanardi Stabilizing quantum information , 2000 .

[3]  Victor V. Albert,et al.  Symmetries and conserved quantities in Lindblad master equations , 2013, 1310.1523.

[4]  B. Terhal Quantum error correction for quantum memories , 2013, 1302.3428.

[5]  J. Avron,et al.  Quantum response of dephasing open systems , 2010, 1008.4079.

[6]  Implementation of holonomic quantum computation through engineering and manipulating the environment , 2007, 0704.0482.

[7]  Paolo Zanardi,et al.  Robustness of non-Abelian holonomic quantum gates against parametric noise , 2004 .

[8]  J. Preskill,et al.  Encoding a qubit in an oscillator , 2000, quant-ph/0008040.

[9]  Daniel A Lidar,et al.  Fault-tolerant holonomic quantum computation. , 2009, Physical review letters.

[10]  Erik Sjöqvist,et al.  Nonadiabatic holonomic quantum computation in decoherence-free subspaces. , 2012, Physical review letters.

[11]  V. Giovannetti,et al.  Non-Abelian phases from quantum Zeno dynamics , 2013, 1305.6433.

[12]  M. Moussa,et al.  From decoherence-free channels to decoherence-free and quasi-free subspaces within bosonic dissipative networks , 2011 .

[13]  Guang-Can Guo,et al.  Preserving Coherence in Quantum Computation by Pairing Quantum Bits , 1997 .

[14]  C. Arenz,et al.  Generation of two-mode entangled states by quantum reservoir engineering , 2013, 1303.1977.

[15]  Shi-Biao Zheng Open-system geometric phase based on system-reservoir joint state evolution , 2014, 1405.1227.

[16]  Daniel A. Lidar,et al.  Decoherence-induced geometric phase in a multilevel atomic system , 2006, quant-ph/0612201.

[17]  S. Girvin,et al.  Deterministically Encoding Quantum Information Using 100-Photon Schrödinger Cat States , 2013, Science.

[18]  R. Stephenson A and V , 1962, The British journal of ophthalmology.

[19]  Mazyar Mirrahimi,et al.  Real-time quantum feedback prepares and stabilizes photon number states , 2011, Nature.

[20]  K. B. Whaley,et al.  Theory of decoherence-free fault-tolerant universal quantum computation , 2000, quant-ph/0004064.

[21]  D. A. Lidar,et al.  Adiabatic approximation in open quantum systems , 2005 .

[22]  H. Carmichael Statistical Methods in Quantum Optics 2: Non-Classical Fields , 2007 .

[23]  M. S. Kim,et al.  Efficient quantum computation using coherent states , 2001, quant-ph/0109077.

[24]  Daniel A. Lidar,et al.  Zeno effect for quantum computation and control. , 2011, Physical review letters.

[25]  V. Vedral,et al.  Coherent quantum evolution via reservoir driven holonomies. , 2005, Physical review letters.

[26]  P. Zanardi,et al.  Virtual quantum subsystems. , 2001, Physical review letters.

[27]  Paolo Zanardi,et al.  Holonomic quantum computation , 1999 .

[28]  Masahide Sasaki,et al.  Conditional generation of an arbitrary superposition of coherent states , 2007 .

[29]  Johan Åberg,et al.  Adiabatic approximation for weakly open systems , 2005 .

[30]  R. J. Schoelkopf,et al.  Confining the state of light to a quantum manifold by engineered two-photon loss , 2014, Science.

[31]  Vahid Azimi Mousolou,et al.  Universal non-adiabatic holonomic gates in quantum dots and single-molecule magnets , 2012, 1209.3645.

[32]  Frank Wilczek,et al.  Appearance of Gauge Structure in Simple Dynamical Systems , 1984 .

[33]  D A Lidar,et al.  Holonomic quantum computation in decoherence-free subspaces. , 2005, Physical review letters.

[34]  Confined quantum Zeno dynamics of a watched atomic arrow , 2014, 1402.0111.

[35]  Herbert Spohn,et al.  Open quantum systems with time-dependent Hamiltonians and their linear response , 1978 .

[36]  Abelian and non-Abelian geometric phases in adiabatic open quantum systems , 2005, quant-ph/0507012.

[37]  M. Moussa,et al.  Quasi-perfect state transfer in a bosonic dissipative network , 2009, 0905.1267.

[38]  T. Monz,et al.  An open-system quantum simulator with trapped ions , 2011, Nature.

[39]  Guilu Long,et al.  Universal Nonadiabatic Geometric Gates in Two-Qubit Decoherence-Free Subspaces , 2014, Scientific reports.

[40]  P. Zanardi,et al.  Noiseless Quantum Codes , 1997, quant-ph/9705044.

[41]  B. Garraway,et al.  Generation and preservation of coherence in dissipative quantum optical environments , 1998 .

[42]  I. Malkin,et al.  EVEN AND ODD COHERENT STATES AND EXCITATIONS OF A SINGULAR OSCILLATOR , 1974 .

[43]  Gerard J. Milburn,et al.  Engineering Dissipative Channels for Realizing Schrödinger Cats in SQUIDs , 2014, Front. ICT.

[44]  P. Facchi,et al.  Quantum Zeno subspaces. , 2002, Physical review letters.

[45]  G. J. Milburn,et al.  Macroscopically distinct quantum-superposition states as a bosonic code for amplitude damping , 1998, quant-ph/9809037.

[46]  Relaxation- and decoherence-free subspaces in networks of weakly and strongly coupled resonators , 2006, quant-ph/0608204.

[47]  Knight,et al.  Quantum computing using dissipation to remain in a decoherence-free subspace , 2000, Physical review letters.

[48]  Apostolos Vourdas,et al.  Quantum systems with finite Hilbert space , 2004 .

[49]  Hui Yan,et al.  Nonadiabatic holonomic quantum computation in decoherence-free subspaces with trapped ions , 2014 .

[50]  J. F. Poyatos,et al.  Quantum Reservoir Engineering with Laser Cooled Trapped Ions. , 1996, Physical review letters.

[51]  G. Lindblad On the generators of quantum dynamical semigroups , 1976 .

[52]  Paolo Zanardi,et al.  Non-Abelian Berry connections for quantum computation , 1999 .

[53]  Daniel A. Lidar,et al.  Adiabaticity in open quantum systems , 2007, 1508.05558.

[54]  J. E. Avron,et al.  Adiabatic Theorems for Generators of Contracting Evolutions , 2011, 1106.4661.

[55]  Julien Laurat,et al.  Generating Optical Schrödinger Kittens for Quantum Information Processing , 2006, Science.

[56]  V. Vedral,et al.  Geometric phase induced by a cyclically evolving squeezed vacuum reservoir. , 2005, Physical review letters.

[57]  Hui Sun,et al.  Geometric entangling gates in decoherence-free subspaces with minimal requirements. , 2009, Physical review letters.

[58]  Masahide Sasaki,et al.  Generation of large-amplitude coherent-state superposition via ancilla-assisted photon subtraction. , 2008, Physical review letters.

[59]  Daniel A. Lidar,et al.  Decoherence-Free Subspaces for Quantum Computation , 1998, quant-ph/9807004.

[60]  T. Ralph,et al.  Fault-tolerant linear optical quantum computing with small-amplitude coherent States. , 2007, Physical review letters.

[61]  S. Braunstein,et al.  Quantum Information with Continuous Variables , 2004, quant-ph/0410100.

[62]  J. Avron,et al.  Adiabatic Response for Lindblad Dynamics , 2012, 1202.5750.

[63]  K. Dean,et al.  A 20 By , 2009 .

[64]  Kae Nemoto,et al.  Schrödinger cats and their power for quantum information processing , 2004 .

[65]  Ognyan Oreshkov Holonomic quantum computation in subsystems. , 2009, Physical review letters.

[66]  G. Milburn,et al.  Quantum computation with optical coherent states , 2002, QELS 2002.

[67]  S. Girvin,et al.  Observation of quantum state collapse and revival due to the single-photon Kerr effect , 2012, Nature.

[68]  X. Yi,et al.  Time-dependent decoherence-free subspace , 2012, 1205.1298.

[69]  R. Blatt,et al.  Quantum simulation of dynamical maps with trapped ions , 2012, Nature Physics.

[70]  S. Chumakov,et al.  A Group-Theoretical Approach to Quantum Optics , 2009 .

[71]  Lloyd,et al.  Almost any quantum logic gate is universal. , 1995, Physical review letters.

[72]  J P Pekola,et al.  Decoherence in adiabatic quantum evolution: application to cooper pair pumping. , 2010, Physical review letters.

[73]  E. Sudarshan,et al.  Completely Positive Dynamical Semigroups of N Level Systems , 1976 .

[74]  P. Zanardi,et al.  Geometry, robustness, and emerging unitarity in dissipation-projected dynamics , 2014, 1412.6198.

[75]  John Calsamiglia,et al.  Adiabatic markovian dynamics. , 2010, Physical review letters.

[76]  S. Chaturvedi,et al.  Berry's phase for coherent states , 1987 .

[77]  Viola,et al.  Theory of quantum error correction for general noise , 2000, Physical review letters.

[78]  P. Zanardi,et al.  Quantum computation in noiseless subsystems with fast non-Abelian holonomies , 2013, 1308.1919.

[79]  R. J. Schoelkopf,et al.  Tracking photon jumps with repeated quantum non-demolition parity measurements , 2013, Nature.

[80]  B. M. Terhal,et al.  Encoding a qubit into a cavity mode in circuit QED using phase estimation , 2015, 1506.05033.

[81]  G. J. Milburn,et al.  Entangled Coherent State Qubits in an Ion Trap , 1999, quant-ph/9910057.

[82]  Jiannis K. Pachos,et al.  Decoherence-free dynamical and geometrical entangling phase gates (9 pages) , 2004 .

[83]  Liang Jiang,et al.  Cavity State Manipulation Using Photon-Number Selective Phase Gates. , 2015, Physical review letters.

[84]  T. Ralph,et al.  Transmission of optical coherent-state qubits , 2003, quant-ph/0311093.

[85]  Mazyar Mirrahimi,et al.  Hardware-efficient autonomous quantum memory protection. , 2012, Physical review letters.

[86]  Z. D. Wang,et al.  Physical implementation of holonomic quantum computation in decoherence-free subspaces with trapped ions , 2006 .

[87]  Victor V. Albert,et al.  Dynamically protected cat-qubits: a new paradigm for universal quantum computation , 2013, 1312.2017.