Fully solution-processing route toward highly transparent polymer solar cells.

We report highly transparent polymer solar cells using metallic silver nanowires (AgNWs) as both the electron- and hole-collecting electrodes. The entire stack of the devices is processed from solution using a doctor blading technique. A thin layer of zinc oxide nanoparticles is introduced between photoactive layer and top AgNW electrode which plays decisive roles in device functionality: it serves as a mechanical foundation which allows the solution-deposition of top AgNWs, and more importantly it facilitates charge carriers extraction due to the better energy level alignment and the formation of ohmic contacts between the active layer/ZnO and ZnO/AgNWs. The resulting semitransparent polymer:fullerene solar cells showed a power conversion efficiency of 2.9%, which is 72% of the efficiency of an opaque reference device. Moreover, an average transmittance of 41% in the wavelength range of 400-800 nm is achieved, which is of particular interest for applications in transparent architectures.

[1]  S. Shiratori,et al.  Viscous conductive glue layer in semitransparent polymer-based solar cells fabricated by a lamination process. , 2013, ACS applied materials & interfaces.

[2]  Soeren Steudel,et al.  Nanoparticle-based, spray-coated silver top contacts for efficient polymer solar cells , 2009 .

[3]  Alberto Salleo,et al.  Semi‐Transparent Polymer Solar Cells with Excellent Sub‐Bandgap Transmission for Third Generation Photovoltaics , 2013, Advanced materials.

[4]  Han‐Ki Kim,et al.  Simple brush-painting of flexible and transparent Ag nanowire network electrodes as an alternative ITO anode for cost-efficient flexible organic solar cells , 2012 .

[5]  Alex K.-Y. Jen,et al.  Indium tin oxide-free semi-transparent inverted polymer solar cells using conducting polymer as both bottom and top electrodes , 2009 .

[6]  Tianyou Zhang,et al.  Improvement in power conversion efficiency and long-term lifetime of organic photovoltaic cells by using bathophenanthroline/molybdenum oxide as compound cathode buffer layer , 2013 .

[7]  Uli Lemmer,et al.  Efficient Semi‐Transparent Organic Solar Cells with Good Transparency Color Perception and Rendering Properties , 2011 .

[8]  Fanxu Meng,et al.  Simultaneous improvement in efficiency and transmittance of low bandgap semitransparent polymer solar cells with one-dimensional photonic crystals , 2013 .

[9]  M. Halik,et al.  ITO‐Free and Fully Solution‐Processed Semitransparent Organic Solar Cells with High Fill Factors , 2013 .

[10]  Christoph J. Brabec,et al.  Fabrication, Optical Modeling, and Color Characterization of Semitransparent Bulk‐Heterojunction Organic Solar Cells in an Inverted Structure , 2010 .

[11]  Wolfgang Kowalsky,et al.  Efficient semitransparent inverted organic solar cells with indium tin oxide top electrode , 2009 .

[12]  O. Inganäs,et al.  Semi‐Transparent Tandem Organic Solar Cells with 90% Internal Quantum Efficiency , 2012 .

[13]  Christoph J. Brabec,et al.  Spray‐Coated Silver Nanowires as Top Electrode Layer in Semitransparent P3HT:PCBM‐Based Organic Solar Cell Devices , 2013 .

[14]  A. Jen,et al.  Semi-transparent polymer solar cells with 6% PCE, 25% average visible transmittance and a color rendering index close to 100 for power generating window applications , 2012 .

[15]  C. Brabec,et al.  High fill factor polymer solar cells comprising a transparent, low temperature solution processed doped metal oxide/metal nanowire composite electrode , 2012 .

[16]  J. D. de Mello,et al.  Fully solution-processed semitransparent organic solar cells with a silver nanowire cathode and a conducting polymer anode. , 2014, ACS nano.

[17]  F. Krebs,et al.  Flexible ITO‐free polymer solar cells , 2013 .

[18]  Christoph J. Brabec,et al.  An Efficient Solution‐Processed Intermediate Layer for Facilitating Fabrication of Organic Multi‐Junction Solar Cells , 2013 .

[19]  Uli Lemmer,et al.  Inverted semi-transparent organic solar cells with spray coated, surfactant free polymer top-electrodes , 2012 .

[20]  Christoph J. Brabec,et al.  Semitransparent polymer solar cells , 2013 .

[21]  Hongwei Sun,et al.  Semitransparent polymer solar cells with 5% power conversion efficiency using photonic crystal reflector. , 2014, ACS applied materials & interfaces.

[22]  Shijun Jia,et al.  Polymer–Fullerene Bulk‐Heterojunction Solar Cells , 2009, Advanced materials.

[23]  J. Martorell,et al.  Transparent polymer solar cells employing a layered light-trapping architecture , 2013, Nature Photonics.

[24]  F. Krebs Fabrication and processing of polymer solar cells: A review of printing and coating techniques , 2009 .

[25]  Zhibin Yu,et al.  Silver Nanowire‐Polymer Composite Electrodes for Efficient Polymer Solar Cells , 2011, Advanced materials.

[26]  Gang Li,et al.  High-performance semi-transparent polymer solar cells possessing tandem structures , 2013 .

[27]  A. Jen,et al.  Highly Efficient Polymer Tandem Cells and Semitransparent Cells for Solar Energy , 2014 .

[28]  Alberto Salleo,et al.  Spray Deposition of Silver Nanowire Electrodes for Semitransparent Solid‐State Dye‐Sensitized Solar Cells , 2013 .

[29]  Liangbing Hu,et al.  Emerging Transparent Electrodes Based on Thin Films of Carbon Nanotubes, Graphene, and Metallic Nanostructures , 2011, Advanced materials.

[30]  Christoph J. Brabec,et al.  Patterning of organic photovoltaic modules by ultrafast laser , 2015 .

[31]  D. Bradley,et al.  Efficient Organic Solar Cells with Solution‐Processed Silver Nanowire Electrodes , 2011, Advanced materials.

[32]  Gang Li,et al.  Visibly transparent polymer solar cells produced by solution processing. , 2012, ACS nano.

[33]  Christoph J. Brabec,et al.  Solution‐Processed Metallic Nanowire Electrodes as Indium Tin Oxide Replacement for Thin‐Film Solar Cells , 2011 .