Infrared fixed point and anomalous dimensions in a composite Higgs model

We use lattice simulations and the continuous renormalization-group method, based on the gradient flow, to study a candidate theory of composite Higgs and a partially composite top. The model is an SU(4) gauge theory with four Dirac fermions in each of the fundamental and two-index antisymmetric representations. We find that the theory has an infrared fixed point at $g^2 \simeq 15.5$ in the gradient flow scheme. The mass anomalous dimension of each representation is large at the fixed point. On the other hand, the anomalous dimensions of top-partner operators do not exceed 0.5 at the fixed point. This may not be large enough for a phenomenologically successful model of partial compositeness.

[1]  N. Tantalo,et al.  Multi-representation dynamics of SU(4) composite Higgs models: chiral limit and spectral reconstructions , 2022, The European Physical Journal C.

[2]  B. Lucini,et al.  Spectroscopy of chimera baryons in a $Sp(4)$ lattice gauge theory , 2022, 2211.03955.

[3]  O. Witzel,et al.  $\Lambda$ parameter of the SU(3) Yang-Mills theory from the continuous $\beta$ function , 2023, 2303.00704.

[4]  D. K. Hong,et al.  Lattice studies of the Sp(4) gauge theory with two fundamental and three antisymmetric Dirac f , 2022, Physical Review D.

[5]  A. Hasenfratz,et al.  Taming lattice artifacts with Pauli-Villars fields , 2021, Physical Review D.

[6]  E. Neil,et al.  Low-energy constant L10 in a two-representation lattice theory , 2021 .

[7]  R. Brower,et al.  Near-conformal dynamics in a chirally broken system , 2020, Physical Review D.

[8]  O. Witzel,et al.  Dislocations under gradient flow and their effect on the renormalized coupling , 2020, 2004.00758.

[9]  G. Cacciapaglia,et al.  The Techni-Pati-Salam Composite Higgs , 2020, 2005.12302.

[10]  Jong-Wan Lee,et al.  Into the conformal window: Multirepresentation gauge theories , 2020, Physical Review D.

[11]  O. Witzel,et al.  Continuous renormalization group β function from lattice simulations , 2019, Physical Review D.

[12]  O. Witzel,et al.  Constructing a composite Higgs model with built-in large separation of scales , 2019, 1912.12255.

[13]  O. Witzel,et al.  Continuous $\beta$ function for the SU(3) gauge systems with two and twelve fundamental flavors , 2019, 1911.11531.

[14]  D. K. Hong,et al.  Sp (4) gauge theories on the lattice: Nf = 2 dynamical fundamental fermions , 2019, Journal of High Energy Physics.

[15]  D. B. Franzosi,et al.  Anomalous dimensions of potential top-partners , 2019, SciPost Physics.

[16]  G. Cossu,et al.  Strong dynamics with matter in multiple representations: $$\mathrm {SU}(4)$$ gauge theory with fundamental and sextet fermions , 2019, The European Physical Journal C.

[17]  E. Neil,et al.  Radiative contribution to the composite-Higgs potential in a two-representation lattice model , 2019, Physical Review D.

[18]  T. DeGrand,et al.  Partial compositeness and baryon matrix elements on the lattice , 2018, Physical Review D.

[19]  C. Carey Bennett , 2018, Tempo.

[20]  E. Neil,et al.  Nonperturbative Renormalization of Operators in Near-Conformal Systems Using Gradient Flows. , 2018, Physical review letters.

[21]  T. DeGrand,et al.  Finite-temperature phase structure of SU(4) gauge theory with multiple fermion representations , 2018, Physical Review D.

[22]  T. DeGrand,et al.  Baryon spectrum of SU(4) composite Higgs theory with two distinct fermion representations , 2018, Physical Review D.

[23]  T. DeGrand,et al.  Spectroscopy of SU(4) composite Higgs theory with two distinct fermion representations , 2017, 1710.00806.

[24]  M. Golterman,et al.  Effective potential in ultraviolet completions for composite Higgs models , 2017, 1707.06033.

[25]  J. Kuti,et al.  A new method for the beta function in the chiral symmetry broken phase , 2017, 1711.04833.

[26]  A. Belyaev,et al.  Di-boson signatures as standard candles for partial compositeness , 2016, 1610.06591.

[27]  G. Ferretti Gauge theories of partial compositeness: scenarios for Run-II of the LHC , 2016, 1604.06467.

[28]  R. Brower,et al.  Composite Higgs model at a conformal fixed point , 2015, 1512.02576.

[29]  S. Sint,et al.  Symanzik improvement of the gradient flow in lattice gauge theories , 2015, The European physical journal. C, Particles and fields.

[30]  T. DeGrand,et al.  One-loop anomalous dimension of top-partner hyperbaryons in a family of composite Higgs models , 2015, 1508.02581.

[31]  Giuliano Panico,et al.  The Composite Nambu-Goldstone Higgs , 2015, 1506.01961.

[32]  L. Vecchi A dangerous irrelevant UV-completion of the composite Higgs , 2015, 1506.00623.

[33]  M. Golterman,et al.  Top quark induced effective potential in a composite Higgs model , 2015, 1502.00390.

[34]  T. DeGrand,et al.  Suppressing dislocations in normalized hypercubic smearing , 2014, 1407.4201.

[35]  G. Ferretti UV completions of partial compositeness: the case for a SU(4) gauge group , 2014, 1404.7137.

[36]  C. Csáki,et al.  Composite Higgses , 2014, 1401.2457.

[37]  D. Karateev,et al.  Fermionic UV completions of composite Higgs models , 2013, 1312.5330.

[38]  M. Luscher Chiral symmetry and the Yang--Mills gradient flow , 2013, 1302.5246.

[39]  J. Kuti,et al.  The Yang-Mills gradient flow in finite volume , 2012, 1208.1051.

[40]  Evgeny Yurkovsky,et al.  Improvement via hypercubic smearing in triplet and sextet QCD , 2010, 1012.2819.

[41]  M. Luscher Properties and uses of the Wilson flow in lattice QCD , 2010, 1006.4518.

[42]  Roberto Contino,et al.  Tasi 2009 lectures: The Higgs as a Composite Nambu-Goldstone Boson , 2010, 1005.4269.

[43]  M. Stephanov,et al.  Conformality Lost , 2009, 0905.4752.

[44]  R. Hoffmann,et al.  Hypercubic smeared links for dynamical fermions , 2007, hep-lat/0702028.

[45]  Elizabeth H. Simmons,et al.  Strong dynamics and electroweak symmetry breaking , 2002, hep-ph/0203079.

[46]  F. Knechtli,et al.  Flavor symmetry and the static potential with hypercubic blocking , 2001, hep-lat/0103029.

[47]  T. DeGrand,et al.  Perturbation theory for fat-link fermion actions , 1999, hep-lat/9909083.

[48]  David B. Kaplan,et al.  Flavor at SSC energies: A New mechanism for dynamically generated fermion masses , 1991 .

[49]  K. Yamawaki,et al.  Nonlinear Realization and Hidden Local Symmetries , 1988 .

[50]  Howard Georgi,et al.  Anatomy of a composite Higgs model , 1985 .

[51]  H. Georgi,et al.  Composite Higgs and custodial SU(2) , 1984 .