Content-adaptive ghost imaging of dynamic scenes.

Limited by long acquisition time of 2D ghost imaging, current ghost imaging systems are so far inapplicable for dynamic scenes. However, it's been demonstrated that nature images are spatiotemporally redundant and the redundancy is scene dependent. Inspired by that, we propose a content-adaptive computational ghost imaging approach to achieve high reconstruction quality under a small number of measurements, and thus achieve ghost imaging of dynamic scenes. To utilize content-adaptive inter-frame redundancy, we put the reconstruction under an iterative reweighted optimization, with non-uniform weight computed from temporal-correlated frame sequences. The proposed approach can achieve dynamic imaging at 16fps with 64×64-pixel resolution.

[1]  Wenlin Gong,et al.  The influence of sparsity property of images on ghost imaging with thermal light. , 2012, Optics letters.

[2]  Wenlin Gong,et al.  Ghost imaging lidar via sparsity constraints , 2012, 1203.3835.

[3]  J. Shapiro,et al.  Reflective ghost imaging through turbulence , 2011, 1110.0845.

[4]  D. O’Leary Robust regression computation computation using iteratively reweighted least squares , 1990 .

[5]  O. Katz,et al.  Ghost imaging with a single detector , 2008, 0812.2633.

[6]  Richard G. Baraniuk,et al.  The STONE Transform: Multi-Resolution Image Enhancement and Real-Time Compressive Video , 2013, ArXiv.

[7]  E. Candès,et al.  Compressive fluorescence microscopy for biological and hyperspectral imaging , 2012, Proceedings of the National Academy of Sciences.

[8]  Jing Cheng Ghost imaging through turbulent atmosphere. , 2009, Optics express.

[9]  R. Boyd,et al.  "Two-Photon" coincidence imaging with a classical source. , 2002, Physical review letters.

[10]  Reza Kheradmand,et al.  Gray-scale and color optical encryption based on computational ghost imaging , 2012 .

[11]  Ce Liu,et al.  Exploring new representations and applications for motion analysis , 2009 .

[12]  Stephen P. Boyd,et al.  Enhancing Sparsity by Reweighted ℓ1 Minimization , 2007, 0711.1612.

[13]  Stephen P. Boyd,et al.  Distributed Optimization and Statistical Learning via the Alternating Direction Method of Multipliers , 2011, Found. Trends Mach. Learn..

[14]  Shih,et al.  Optical imaging by means of two-photon quantum entanglement. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[15]  Yoshiki O-oka,et al.  Differential ghost imaging in time domain , 2017, 1705.04257.

[16]  Jesús Lancis,et al.  Optical encryption based on computational ghost imaging. , 2010, Optics letters.

[17]  Miles J. Padgett,et al.  Differential Computational Ghost Imaging , 2013 .

[18]  Enrong Li,et al.  Ghost imaging of a moving target with an unknown constant speed , 2014 .

[19]  Jeffrey H. Shapiro,et al.  Unified theory of ghost imaging with Gaussian-state light , 2007, 0712.3554.

[20]  Robert W. Boyd,et al.  Compressive Object Tracking using Entangled Photons , 2013 .

[21]  Steven S. Beauchemin,et al.  The computation of optical flow , 1995, CSUR.

[22]  J. Shapiro,et al.  Normalized ghost imaging , 2012, 1212.5041.

[23]  O. Katz,et al.  Compressive ghost imaging , 2009, 0905.0321.

[24]  Rebecca Willett,et al.  Compressive coded aperture superresolution image reconstruction , 2008, 2008 IEEE International Conference on Acoustics, Speech and Signal Processing.

[25]  Ling‐An Wu,et al.  Two‐Photon Imaging with Entangled and Thermal Light , 2011 .

[26]  Richard G. Baraniuk,et al.  Compressive imaging for video representation and coding , 2006 .

[27]  A. Gatti,et al.  Ghost imaging with thermal light: comparing entanglement and classical correlation. , 2003, Physical review letters.

[28]  Takayuki Takahashi,et al.  Computational ghost imaging using deep learning , 2017, ArXiv.

[29]  Ronald E. Meyers,et al.  Turbulence Free Ghost Imaging: Experiments and Results , 2011 .

[30]  Graham M. Gibson,et al.  Simultaneous real-time visible and infrared video with single-pixel detectors , 2015, Scientific Reports.

[31]  P. Holland,et al.  Robust regression using iteratively reweighted least-squares , 1977 .

[32]  Ling-An Wu,et al.  Correlated two-photon imaging with true thermal light. , 2005, Optics letters.

[33]  Chengbo Li An efficient algorithm for total variation regularization with applications to the single pixel camera and compressive sensing , 2010 .

[34]  Y. Shih,et al.  Two-photon "ghost" imaging with thermal light , 2004, 2005 Quantum Electronics and Laser Science Conference.