Summary We have deployed a novel permanent monitoring system at the Australian CO2CRC Otway Site that includes a surface and borehole distributed acoustic sensing (DAS) network with orbital vibrator (rotary) surface seismic sources. DAS is an emerging technology for performing seismic acquisition based on optical interferometric techniques, which allows for data collection with a wide spatial aperture and high temporal resolution using commercially available telecommunications fibres. DAS sensitivity currently lags behind conventional discrete geophone and hydrophone sensor technologies. Our implementation of surface rotary seismic sources is based on open-loop controlled asynchronous motors. This avoids the complexity of feedback loops for phase control, instead using deconvolution of the source function as measured by a shallow source-monitor sensor. Initial data analysis shows that the amount of energy available from long source sweeps overcomes limitations in DAS sensitivity. The combination of relatively inexpensive but powerful permanent surface sources with permanent DAS deployment in an areal array provides a new paradigm for time-lapse seismic monitoring. The methodology we describe has broad applicability for long-term reservoir surveillance, with time-lapse change sensitive to many subsurface properties.