Influence of Glycyl‐L‐Glutamic Acid Dipeptide on Calcium Pyrophosphate Dihydrate Crystallization

[1]  R. Hill,et al.  Self-assembled calcium pyrophosphate nanostructures for targeted molecular delivery. , 2022, Biomaterials Advances.

[2]  M. Reijnierse,et al.  Imaging of Crystal Disorders:: Calcium Pyrophosphate Dihydrate Crystal Deposition Disease, Calcium Hydroxyapatite Crystal Deposition Disease and Gout Pathophysiology, Imaging, and Diagnosis. , 2022, Radiologic clinics of North America.

[3]  M. Uo,et al.  Chemical Diagnosis of Calcium Pyrophosphate Deposition Disease of the Temporomandibular Joint: A Case Report , 2022, Diagnostics.

[4]  Charlene J. Williams,et al.  Pathogenesis of calcium pyrophosphate deposition disease. , 2021, Best practice & research. Clinical rheumatology.

[5]  S. Polat,et al.  Elucidating the role of hyaluronic acid in the structure and morphology of calcium oxalate crystals , 2021, Advanced Powder Technology.

[6]  Keigo Maeda,et al.  A case of deposition of calcium pyrophosphate dehydrate crystals with synovial chondromatosis in the temporomandibular joint , 2021, Journal of Oral and Maxillofacial Surgery, Medicine, and Pathology.

[7]  F. M. Penha,et al.  Selective Crystallization of d-Mannitol Polymorphs Using Surfactant Self-Assembly , 2021, Crystal growth & design.

[8]  P. Sayan,et al.  Effect of Apium graveolens extract on the surface morphology and characteristics of calcium pyrophosphate crystals , 2021 .

[9]  Min‐Jung Kang,et al.  Screening of Fv Antibodies with Specific Binding Activities to Monosodium Urate and Calcium Pyrophosphate Dihydrate Crystals for the Diagnosis of Gout and Pseudogout. , 2021, ACS applied bio materials.

[10]  N. Sbirrazzuoli Model-free isothermal and nonisothermal predictions using advanced isoconversional methods , 2021 .

[11]  Aydogan Ozcan,et al.  Calcium pyrophosphate crystal size and characteristics , 2021, Osteoarthritis and cartilage open.

[12]  A. Rosenthal,et al.  Management of calcium pyrophosphate crystal deposition disease: A systematic review. , 2020, Seminars in arthritis and rheumatism.

[13]  S.-H. Lee,et al.  Diagnostic value of ultrasound in calcium pyrophosphate deposition disease of the knee joint. , 2019, Osteoarthritis and cartilage.

[14]  Renaudin,et al.  Adsorption of Proteins on m-CPPD and Urate Crystals Inhibits Crystal-Induced Cell Responses: Study on Albumin-Crystal Interaction , 2019, Journal of functional biomaterials.

[15]  C. Rey,et al.  Influence of Ionic Additives on Triclinic Calcium Pyrophosphate Dihydrate Precipitation , 2017 .

[16]  C. Rey,et al.  Synthesis and Characterisation of Hydrated Calcium Pyrophosphate Phases of Biological Interest , 2013 .

[17]  P. Budrugeac Applicability of non-isothermal model-free predictions for assessment of conversion vs. time curves for complex processes in isothermal and quasi-isothermal conditions , 2013 .

[18]  H. L. Friedman,et al.  Kinetics of thermal degradation of char-forming plastics from thermogravimetry. Application to a phenolic plastic , 2007 .

[19]  F. Martinon,et al.  Gout-associated uric acid crystals activate the NALP3 inflammasome , 2006, Nature.

[20]  P. O’Brien,et al.  Formation of spherical granules of calcium pyrophosphate , 2003 .

[21]  Joseph H. Flynn,et al.  A quick, direct method for the determination of activation energy from thermogravimetric data , 1966 .

[22]  T. Ozawa A New Method of Analyzing Thermogravimetric Data , 1965 .

[23]  H. E. Kissinger Reaction Kinetics in Differential Thermal Analysis , 1957 .

[24]  H. Eyring The Activated Complex in Chemical Reactions , 1935 .

[25]  Yuan Su,et al.  Amorphous-mediated crystallization of calcium pyrophosphate tetrahydrate: the role of alkaline earth metal ions , 2022, CrystEngComm.

[26]  J. Christoffersen,et al.  Effects of a Bisphosphonate (EHDP) on Growth, Formation, and Dissolution of Calcium Pyrophosphate Crystals† , 2003 .

[27]  M. G. Evans,et al.  Some applications of the transition state method to the calculation of reaction velocities, especially in solution , 1935 .