The gradient morphogen bicoid is a concentration-dependent transcriptional activator

[1]  L. Wolpert Positional information and the spatial pattern of cellular differentiation. , 1969, Journal of theoretical biology.

[2]  K. Sander Specification of the Basic Body Pattern in Insect Embryogenesis1 , 1976 .

[3]  Mark Ptashne,et al.  Interactions between DNA-bound repressors govern regulation by the λ phage repressor , 1979 .

[4]  C. Nüsslein-Volhard,et al.  Mutations affecting segment number and polarity in Drosophila , 1980, Nature.

[5]  M Ptashne,et al.  Gene regulation at the right operator (OR) of bacteriophage lambda. II. OR1, OR2, and OR3: their roles in mediating the effects of repressor and cro. , 1980, Journal of molecular biology.

[6]  G. Rubin,et al.  Genetic transformation of Drosophila with transposable element vectors. , 1982, Science.

[7]  J. Lis,et al.  New heat shock puffs and β=galactosidase activity resulting from transformation of Drosophila with an hsp70-lacZ hybrid gene , 1983, Cell.

[8]  D. Melton,et al.  Efficient in vitro synthesis of biologically active RNA and RNA hybridization probes from plasmids containing a bacteriophage SP6 promoter. , 1984, Nucleic acids research.

[9]  R. Brent,et al.  A eukaryotic transcriptional activator bearing the DNA specificity of a prokaryotic repressor , 1985, Cell.

[10]  R. Myers,et al.  Detection of single base substitutions by ribonuclease cleavage at mismatches in RNA:DNA duplexes. , 1985, Science.

[11]  R. Kelly,et al.  In vitro translocation of organelles along microtubules , 1985, Cell.

[12]  K. Struhl,et al.  Functional dissection of a eukaryotic transcriptional activator protein, GCN4 of Yeast , 1986, Cell.

[13]  P. Ingham,et al.  Isolation, structure, and expression of even-skipped: A second pair-rule gene of Drosophila containing a homeo box , 1986, Cell.

[14]  K. Struhl Constitutive and inducible Saccharomyces cerevisiae promoters: evidence for two distinct molecular mechanisms , 1986, Molecular and Cellular Biology.

[15]  J. Lis,et al.  Spatial and temporal pattern of hsp26 expression during normal development. , 1986, The EMBO journal.

[16]  G. Struhl,et al.  A molecular gradient in early Drosophila embryos and its role in specifying the body pattern , 1986, Nature.

[17]  C. Nüsslein-Volhard,et al.  Organization of anterior pattern in the Drosophila embryo by the maternal gene bicoid , 1986, Nature.

[18]  Ruth Lehmann,et al.  Abdominal segmentation, pole cell formation, and embryonic polarity require the localized activity of oskar, a maternal gene in drosophila , 1986, Cell.

[19]  M. Noll,et al.  Structure of the segmentation gene paired and the Drosophila PRD gene set as part of a gene network , 1986, Cell.

[20]  K. Struhl,et al.  Saturation mutagenesis of the yeast his3 regulatory site: requirements for transcriptional induction and for binding by GCN4 activator protein. , 1986, Science.

[21]  M. Garabedian,et al.  A tissue-specific transcription enhancer from the Drosophila yolk protein 1 gene , 1986, Cell.

[22]  Walter J. Gehring,et al.  Regulation and function of the Drosophila segmentation gene fushi tarazu , 1987, Cell.

[23]  R. Lehmann,et al.  hunchback, a gene required for segmentation of an anterior and posterior region of the Drosophila embryo. , 1987, Developmental biology.

[24]  Diethard Tautz,et al.  Finger protein of novel structure encoded by hunchback, a second member of the gap class of Drosophila segmentation genes , 1987, Nature.

[25]  K. Struhl The DNA-binding domains of the jun oncoprotein and the yeast GCN4 transcriptional activator protein are functionally homologous , 1987, Cell.

[26]  R. Lehmann,et al.  Determination of anteroposterior polarity in Drosophila. , 1987, Science.

[27]  P. Lawrence,et al.  Borders of parasegments in Drosophila embryos are delimited by the fushi tarazu and even-skipped genes , 1987, Nature.

[28]  F. Turner,et al.  A development genetic analysis of the gene regulator of postbithorax in Drosophila melanogaster. , 1987, Developmental biology.

[29]  P N Goodfellow,et al.  A Genetic Switch: Gene Control and Phage λ , 1987 .

[30]  Jun Ma,et al.  Deletion analysis of GAL4 defines two transcriptional activating segments , 1987, Cell.

[31]  Two related regulatory sequences are required for maximal induction of Saccharomyces cerevisiae his3 transcription. , 1987, Molecular and cellular biology.

[32]  H. Jäckle,et al.  Pole region-dependent repression of the Drosophila gap gene Krüppel by maternal gene products , 1987, Cell.

[33]  W. J. Gehring,et al.  Hierarchy of the genetic interactions that specify the anteroposterior segmentation pattern of the Drosophila embryo as monitored by caudal protein expression , 1987 .

[34]  C. Nüsslein-Volhard,et al.  Maternal genes required for the anterior localization of bicoid activity in the embryo of Drosophila , 1987 .

[35]  Marek Mlodzik,et al.  Expression of the caudal gene in the germ line of Drosophila: Formation of an RNA and protein gradient during early embryogenesis , 1987, Cell.

[36]  E Seifert,et al.  Differential regulation of the two transcripts from the Drosophila gap segmentation gene hunchback. , 1988, The EMBO journal.

[37]  M. Delorenzi,et al.  Drosophila homoeotic genes encode transcriptional activators similar to mammalian OTF-2 , 1988, Nature.

[38]  P. Ingham The molecular genetics of embryonic pattern formation in Drosophila , 1988, Nature.

[39]  K. Struhl The JUN oncoprotein, a vertebrate transcription factor, activates transcription in yeast , 1988, Nature.

[40]  K. Struhl,et al.  Saturation mutagenesis of a yeast his3 "TATA element": genetic evidence for a specific TATA-binding protein. , 1988, Proceedings of the National Academy of Sciences of the United States of America.

[41]  D Bopp,et al.  The role of localization of bicoid RNA in organizing the anterior pattern of the Drosophila embryo. , 1988, The EMBO journal.

[42]  P. O’Farrell,et al.  Activation and repression of transcription by homoeodomain-containing proteins that bind a common site , 1988, Nature.

[43]  Diethard Tautz,et al.  Regulation of the Drosophila segmentation gene hunchback by two maternal morphogenetic centres , 1988, Nature.

[44]  C. Nüsslein-Volhard,et al.  The bicoid protein determines position in the Drosophila embryo in a concentration-dependent manner , 1988, Cell.

[45]  C. Nüsslein-Volhard,et al.  A gradient of bicoid protein in Drosophila embryos , 1988, Cell.

[46]  G. Struhl,et al.  Cis- acting sequences responsible for anterior localization of bicoid mRNA in Drosophila embryos , 1988, Nature.

[47]  Kevin Struhl,et al.  Structural and functional characterization of the short acidic transcriptional activation region of yeast GCN4 protein , 1988, Nature.

[48]  M. Scott,et al.  The structure and function of the homeodomain. , 1989, Biochimica et biophysica acta.

[49]  M. Levine,et al.  Synergistic activation and repression of transcription by Drosophila homeobox proteins , 1989, Cell.

[50]  Wolfgang Driever,et al.  The bicoid protein is a positive regulator of hunchback transcription in the early Drosophila embryo , 1989, Nature.

[51]  A. M. Turing,et al.  The chemical basis of morphogenesis , 1952, Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences.