A Dual Number Approach to the Kinematic Analysis of Spatial Linkages With Dimensional and Geometric Tolerances

Design robustness is somewhat connected to tolerances. In fact, the lower is the sensitivity of the kinematic function to the deviations of manufacturing process, the higher is the robustness of the design. In this investigation is described a tolerance analysis method based on dual vectors kinematic modeling of spatial linkages and on Monte Carlo simulation of the random variables. In the present analysis the hypothesis of rigid bodies is valid and only kinematic variables are considered in output. The method is applied to a Cardan joint modelled as an RCCC linkage with main dimensions considered as stochastic variables with Gaussian distribution. Dual vectors are well known in kinematic analysis and synthesis of spatial mechanisms. When compared with traditional vectorial methods, dual vectors show an enhanced capability to model misalignments among kinematic pairs axes. Although this is not the first time that dual vectors are used for the kinematic and dynamic analysis of spatial mechanisms with manufacturing errors, the present use of dual vectors to model joint clearances seems somewhat novel.© 2004 ASME