Lightning induced effects on lossy multiconductor power lines with ground wires and non-linear loads - Part I: model

In the paper, which is a companion paper of part II: simulation results and experimental validation, we will present a model for the calculation of induced voltages produced by indirect lightning on multiconductor power lines. In particular, the case of power lines with ground wires terminated on non-linear loads is studied. The power line is represented by an equivalent time domain m-port, and the effects of the lightning excitation are represented through equivalent independent sources. This equivalent time-domain circuit allows treating easily non-linear terminations such as surge arresters. Streszczenie. W artykule zaprezentowano model obliczen napiec indukowanych podczas nie bezpośredniego wyladowania na wieloprzewodową linie zasilania. Uwzgledniono przewod uziemiony podlączony do nieliniowego obciązenia. (Efekty powodowane wyladowaniem w wieloprzewodowej linii zasilającej z przewodem uziemionym obciązonym nieliniowo - cześc I-model)

[1]  Gerhard Diendorfer,et al.  Induced voltage on an overhead line due to nearby lightning , 1990 .

[2]  A Andreotti,et al.  An efficient architecture of a PV plant for ancillary service supplying , 2010, SPEEDAM 2010.

[3]  A Andreotti,et al.  Electromagnetic Coupling of Lightning to Power Lines: Transmission-Line Approximation versus Full-Wave Solution , 2011, IEEE Transactions on Electromagnetic Compatibility.

[4]  Irene A. Stegun,et al.  Handbook of Mathematical Functions. , 1966 .

[5]  Federico Delfino,et al.  Lightning return stroke current identification via field measurements , 2002 .

[6]  A. Del Pizzo,et al.  A high performance control technique of power electronic transformers in medium voltage grid-connected PV plants , 2010, The XIX International Conference on Electrical Machines - ICEM 2010.

[7]  S. Falco,et al.  Some integrals involving Heidler’s lightning return stroke current expression , 2005 .

[8]  Charles M. Close,et al.  Electromagnetic transients in power systems , 1998, IEEE Power Engineering Review.

[9]  A. Sommerfeld Über die Ausbreitung der Wellen in der drahtlosen Telegraphie , 1909 .

[10]  Hans Kristian Hoidalen,et al.  Analytical formulation of lightning-induced voltages on multiconductor overhead lines above lossy ground , 2003 .

[11]  R. Rizzo,et al.  High Efficiency Wind Generators with Variable Speed Dual-Excited Synchronous Machines , 2007, 2007 International Conference on Clean Electrical Power.

[12]  Luigi Piegari,et al.  A comparison between line-start synchronous machines and induction machines in distributed generation , 2012 .

[13]  M. Ianoz,et al.  Lightning-induced voltages on overhead lines , 1993 .

[14]  Antonio Maffucci,et al.  Transmission lines and lumped circuits , 2001 .

[15]  Antonio Maffucci,et al.  Irregular terms in the impulse response of a multiconductor lossy transmission line , 1999 .

[16]  A. Andreotti,et al.  Non-linear behaviour of LEMP excited power lines terminated on surge-arresters , 1999, 1999 IEEE International Symposium on Electromagnetic Compatability. Symposium Record (Cat. No.99CH36261).

[17]  A. Agrawal,et al.  Transient Response of Multiconductor Transmission Lines Excited by a Nonuniform Electromagnetic Field , 1980, IEEE Transactions on Electromagnetic Compatibility.

[18]  M. Ianoz,et al.  On lightning return stroke models for LEMP calculations , 1988 .

[19]  A. Andreotti,et al.  An Exact Closed-Form Solution for Lightning-Induced Overvoltages Calculations , 2009, IEEE Transactions on Power Delivery.

[20]  Pritindra Chowdhuri Electromagnetic transients in power systems , 1996 .

[21]  M. Ianoz,et al.  Transient analysis of multiconductor lines above a lossy ground , 1999 .

[22]  Shih-Chang Wu,et al.  Characterization of induced voltages on overhead power lines caused by lightning strokes with arbitrary configurations , 1994, Proceedings of IEEE International Conference on Systems, Man and Cybernetics.

[23]  Vladimir A. Rakov,et al.  Lightning electromagnetic fields and induced voltages: Influence of channel tortuosity , 2011, 2011 XXXth URSI General Assembly and Scientific Symposium.

[24]  M. Rubinstein,et al.  An approximate formula for the calculation of the horizontal electric field from lightning at close, intermediate, and long range , 1996 .

[25]  Vladimir A. Rakov,et al.  Calculation of Voltages Induced on Overhead Conductors by Nonvertical Lightning Channels , 2012, IEEE Transactions on Electromagnetic Compatibility.

[26]  Vernon Cooray,et al.  Horizontal fields generated by return strokes , 1992 .

[27]  A. Andreotti,et al.  Analytical Formulations for Lightning-Induced Voltage Calculations , 2013, IEEE Transactions on Electromagnetic Compatibility.

[28]  V. Rakov,et al.  Hl A MODIFIED TRANSMISSION LINE MODEL FOR LIGHTNING RETURN STROKE FIELD CALCULATIONS , 1999 .