Influence of mechanical agitation on the conformal coating of powders

[1]  D. R. Costa,et al.  Coated ZrN sphere-UO2 composites as surrogates for UN-UO2 accident tolerant fuels , 2022, Journal of Nuclear Materials.

[2]  G. Thompson,et al.  Core shell coatings for nuclear thermal propulsion cermets , 2022, Surface & Coatings Technology.

[3]  Jonathan L. Priedeman,et al.  Conformal coating of powders by magnetron sputtering , 2022, Surface and Coatings Technology.

[4]  G. Thompson,et al.  Cermet Surrogate Nuclear Fuels from Coated Powders , 2021 .

[5]  B. Ye,et al.  ZrN coating as diffusion barrier in U(Mo) dispersion fuel systems , 2021 .

[6]  N. Nguyen,et al.  Core-shell microparticles: Generation approaches and applications , 2020 .

[7]  Z. Mahdavi,et al.  Core–shell nanoparticles used in drug delivery-microfluidics: a review , 2020, RSC advances.

[8]  D. Kirilenko,et al.  Fast and Controllable Synthesis of Core–Shell Fe3O4–C Nanoparticles by Aerosol CVD , 2020, ACS omega.

[9]  C. Mu,et al.  Plasma-induced FeSiAl@Al2O3@SiO2 core–shell structure for exceptional microwave absorption and anti-oxidation at high temperature , 2020 .

[10]  Chennupati Jagadish,et al.  Compositional Varied Core-Shell InGaP Nanowires Grown by Metal-Organic Chemical Vapor Deposition. , 2019, Nano letters.

[11]  M. Balooch,et al.  Production and characterization of TRISO fuel particles with multilayered SiC , 2019, Journal of Nuclear Materials.

[12]  Feng Wu,et al.  A Chemical Precipitation Method Preparing Hollow-Core-Shell Heterostructures Based on the Prussian Blue Analogs as Cathode for Sodium-Ion Batteries. , 2018, Small.

[13]  B. Bennett,et al.  Chemical vapor deposition of Mo tubes for fuel cladding applications , 2018 .

[14]  D. Tucker,et al.  High density, uniformly distributed W/UO 2 for use in Nuclear Thermal Propulsion , 2017 .

[15]  Q. Zeng,et al.  Novel compounds in the Zr-O system, their crystal structures and mechanical properties. , 2015, Physical chemistry chemical physics : PCCP.

[16]  C. Eisenmenger‐Sittner,et al.  A method for uniformly coating powdery substrates by magnetron sputtering , 2013 .

[17]  S. Matope,et al.  SILVER, COPPER AND ALUMINIUM COATINGS FOR MICRO-MATERIAL HANDLING OPERATIONS , 2013 .

[18]  C. Detavernier,et al.  Surface engineering of low enriched uranium–molybdenum , 2013 .

[19]  M. Ahmadipour,et al.  Preparation and Characterization of Nano-Sized (Mg (x) Fe (1–x) O/SiO 2 ) (x = 0.1) Core-Shell Nanoparticles by Chemical Precipitation Method , 2012 .

[20]  Johannes E. Schindelin,et al.  Fiji: an open-source platform for biological-image analysis , 2012, Nature Methods.

[21]  Zifeng Yan,et al.  A flexible chemical vapor deposition method to synthesize copper@carbon core–shell structured nanowires and the study of their structural electrical properties , 2012 .

[22]  Jiye Fang,et al.  Sol-gel Synthesis and Characterization of Zn2SiO4 : Mn@SiO2 Spherical Core-Shell Particles , 2005 .

[23]  Jonathan Seville,et al.  Interparticle forces in fluidisation: a review , 2000 .

[24]  Uri Banin,et al.  Growth and Properties of Semiconductor Core/Shell Nanocrystals with InAs Cores , 2000 .

[25]  P. Kelly,et al.  Magnetron sputtering: a review of recent developments and applications , 2000 .

[26]  J. Musil,et al.  A perspective of magnetron sputtering in surface engineering , 1999 .

[27]  L. Bergström,et al.  Estimation of Hamaker Constants of Ceramic Materials from Optical Data Using Lifshitz Theory , 1996 .

[28]  D. Geldart Types of gas fluidization , 1973 .

[29]  M. Baerns EFFECT OF INTERPARTICLE ADHESIVE FORCES ON FLUIDIZATION OF FINE PARTICLES. , 1966 .