Asymptotic Continuum Models for Plasmas and Disparate Mass Gaseous Binary Mixtures

We review the derivation of macroscopic models for plasmas and disparate mass binary mixtures from a large-scale limit of the underlying kinetic (Fokker–PlanckorBoltzmann) equations. The Knudsen number (ratio of the collision mean free-path to the size of the system) is supposed to be of the same order of magnitude as the square root of the mass ratio between the particles. The so-obtained macroscopic model consists of a system of two diffusion equations for the electron (or light species) density and energy (often referred to as the energy-transport model), coupled with the gas dynamics Euler system for the ions (or heavy species). This mathematical properties of this system are reviewed and its applicability to various physical contexts is outlined.

[1]  Ansgar Jüngel,et al.  Numerical Discretization of Energy-Transport Models for Semiconductors with Nonparabolic Band Structure , 2000, SIAM J. Sci. Comput..

[2]  Vladimir Kolobov,et al.  Fokker–Planck modeling of electron kinetics in plasmas and semiconductors , 2003 .

[3]  Pierre Degond,et al.  THE FOKKER-PLANCK ASYMPTOTICS OF THE BOLTZMANN COLLISION OPERATOR IN THE COULOMB CASE , 1992 .

[4]  L. Spitzer,et al.  TRANSPORT PHENOMENA IN A COMPLETELY IONIZED GAS , 1953 .

[5]  F. Poupaud,et al.  Diffusion approximation of the linear semiconductor Boltzmann equation : analysis of boundary layers , 1991 .

[6]  A. Bensoussan,et al.  Boundary Layers and Homogenization of Transport Processes , 1979 .

[7]  E. A. Johnson Energy and momentum equations for disparate‐mass binary gases , 1973 .

[8]  François Golse,et al.  Fluid dynamic limits of kinetic equations II convergence proofs for the boltzmann equation , 1993 .

[9]  A. M. Anile,et al.  Extended thermodynamics tested beyond the linear regime: The case of electron transport in silicon semiconductors , 1996 .

[10]  Isabelle Choquet,et al.  Hydrodynamic Limit for an Arc Discharge at Atmospheric Pressure , 2005 .

[11]  Takaaki Nishida,et al.  On the fluid-dynamical approximation to the Boltzmann equation at the level of the Navier-Stokes equation , 1979 .

[12]  P. Degond,et al.  An energy-transport model for semiconductors derived from the Boltzmann equation , 1996 .

[13]  C. D. Levermore,et al.  Moment closure hierarchies for kinetic theories , 1996 .

[14]  Ansgar Jüngel,et al.  A steady-state system in non-equilibrium thermodynamics including thermal and electrical effects , 1998 .

[15]  Neil Goldsman,et al.  2-D MOSFET modeling including surface effects and impact ionization by self-consistent solution of the Boltzmann, Poisson, and hole-continuity equations , 1997 .

[16]  Roberto Natalini,et al.  The Energy Transport and the Drift Diffusion Equations as Relaxation Limits of the Hydrodynamic Mode , 1999 .

[17]  C. Schmeiser,et al.  Macroscopic models for ionization in the presence of strong electric fields , 2000 .

[18]  Antonio Gnudi,et al.  Multidimensional spherical harmonics expansion of Boltzmann equation for transport in semiconductors , 1992 .

[19]  Ansgar Jüngel,et al.  A Mixed Finite-Element Discretization of the Energy-Transport Model for Semiconductors , 2003, SIAM J. Sci. Comput..

[20]  R. Illner,et al.  The mathematical theory of dilute gases , 1994 .

[21]  A. Gnudi,et al.  Two-dimensional NOSFET Simulation by means of Multidimensional Spherical Harmonics Expansion of the Boltzmann Transport Equation , 1992, ESSDERC '92: 22nd European Solid State Device Research conference.

[22]  R. Caflisch The fluid dynamic limit of the nonlinear boltzmann equation , 1980 .

[23]  P. Dmitruk,et al.  High electric field approximation to charge transport in semiconductor devices , 1992 .

[24]  C. Bardos,et al.  DIFFUSION APPROXIMATION AND COMPUTATION OF THE CRITICAL SIZE , 1984 .

[25]  Kazufumi Ito,et al.  EXISTENCE OF STATIONARY SOLUTIONS TO AN ENERGY DRIFT-DIFFUSION MODEL FOR SEMICONDUCTOR DEVICES , 2001 .

[26]  B. Perthame,et al.  The rosseland approximation for the radiative transfer equations , 1987 .

[27]  F. Deluzet Mathematical modeling of plasma opening switches , 2003 .

[28]  N. Goldsman,et al.  A physics-based analytical/numerical solution to the Boltzmann transport equation for use in device simulation , 1991 .

[29]  D. Hilbert,et al.  Begründung der kinetischen Gastheorie , 1912 .

[30]  Radjesvarane Alexandre,et al.  On the Landau approximation in plasma physics , 2004 .

[31]  Harold Grad,et al.  Asymptotic Theory of the Boltzmann Equation , 1963 .

[32]  Y. Apanovich,et al.  Steady-state and transient analysis of submicron devices using energy balance and simplified hydrodynamic models , 1994, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst..

[33]  U. Ravaioli,et al.  An improved energy transport model including nonparabolicity and non-Maxwellian distribution effects , 1992, IEEE Electron Device Letters.

[34]  A. H. Marshak,et al.  Conduction current and generalized einstein relations for degenerate semiconductors and metals , 1976 .

[35]  Pierre Degond,et al.  Transport coefficients of plasmas and disparate mass binary gases , 1996 .

[36]  R. Stratton,et al.  Diffusion of Hot and Cold Electrons in Semiconductor Barriers , 1962 .

[37]  Denis Sipp,et al.  Self-adaptation and viscous selection in concentrated two-dimensional vortex dipoles , 2000 .

[38]  A. W. Trivelpiece,et al.  Introduction to Plasma Physics , 1976 .

[39]  Perkins,et al.  Fluid moment models for Landau damping with application to the ion-temperature-gradient instability. , 1990, Physical review letters.

[40]  P. Degond,et al.  Dispersion Relations for the Linearized Fokker-Planck Equation , 1997 .

[41]  C. Schmeiser,et al.  Energy-Transport Models for Charge Carriers Involving Impact Ionization in Semiconductors , 2003 .

[42]  L. Sirovich,et al.  Equations for Gas Mixtures. II , 1969 .

[43]  A. H. Marshak,et al.  Electrical current in solids with position-dependent band structure , 1978 .

[44]  T. G. Cowling,et al.  The mathematical theory of non-uniform gases , 1939 .

[45]  N. A. Krall,et al.  Principles of Plasma Physics , 1973 .

[46]  Kinetic simulation tools for nano-scale semiconductor devices , 2003 .

[47]  J. Ferziger,et al.  TRANSPORT PROPERTIES OF A NONEQUILIBRIUM PARTIALLY IONIZED GAS. , 1967 .

[48]  Anile,et al.  Improved hydrodynamical model for carrier transport in semiconductors. , 1995, Physical review. B, Condensed matter.

[49]  Guy Schurtz,et al.  A nonlocal electron conduction model for multidimensional radiation hydrodynamics codes , 2000 .

[50]  S. M. Sze,et al.  Physics of semiconductor devices , 1969 .

[51]  Jacob K. White,et al.  Simulation of semiconductor devices using a Galerkin/spherical harmonic expansion approach to solving the coupled Poisson-Boltzmann system , 1996, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst..

[52]  Sub-quarter-micrometer CMOS on ultrathin (400 AA) SOI , 1992, IEEE Electron Device Letters.

[53]  C. Schmeiser,et al.  Semiconductor equations , 1990 .

[54]  Pierre Degond,et al.  Transport of trapped particles in a surface potential , 2002 .

[55]  F. Low,et al.  The Boltzmann equation an d the one-fluid hydromagnetic equations in the absence of particle collisions , 1956, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[56]  A. A. Arsen’ev,et al.  ON THE CONNECTION BETWEEN A SOLUTION OF THE BOLTZMANN EQUATION AND A SOLUTION OF THE LANDAU-FOKKER-PLANCK EQUATION , 1991 .

[57]  Modelling surface-scattering effects in the solution of the Boltzmann transport equation based on the spherical-harmonics expansion , 1998 .

[58]  P. Degond,et al.  High-field approximations of the energy-transport model for semiconductors with non-parabolic band structure , 2001 .

[59]  E. Lyumkis,et al.  TRANSIENT SEMICONDUCTOR DEVICE SIMULATION INCLUDING ENERGY BALANCE EQUATION , 1992 .

[60]  Laurent Desvillettes,et al.  On the Convergence of the Boltzmann Equation for Semiconductors Toward the Energy Transport Model , 2000 .

[61]  P. Degond Macroscopic limits of the Boltzmann equation: a review , 2004 .

[62]  E. Bringuier Kinetic theory of high-field transport in semiconductors , 1998 .

[63]  S. I. Braginskii Transport Processes in a Plasma , 1965 .

[64]  P. Degond,et al.  Diffusion Limits of Kinetic Models , 2003 .

[65]  DIFFUSION OF ELECTRONS BY MULTICHARGED IONS , 2000 .

[66]  C. Cercignani The Boltzmann equation and its applications , 1988 .

[67]  Pierre Degond,et al.  THE ASYMPTOTICS OF COLLISION OPERATORS FOR TWO SPECIES OF PARTICLES OF DISPARATE MASSES , 1996 .

[68]  Laurent Desvillettes,et al.  On asymptotics of the Boltzmann equation when the collisions become grazing , 1992 .

[69]  A. Chwang,et al.  Numerical study of nonlinear shallow water waves produced by a submerged moving disturbance in viscous flow , 1996 .

[70]  Lawrence Sirovich,et al.  Equations for Gas Mixtures , 1967 .

[71]  Pierre Degond,et al.  On a hierarchy of macroscopic models for semiconductors , 1996 .