Design challenges encountered in the F-15 PCA flight test program
暂无分享,去创建一个
The NASA Dryden Flight Research Center conducted flight tests of a propulsion-controlled aircraft system on an F-15 airplane. This system was designed to explore the feasibility of providing safe emergency landing capability using only the engines to provide flight control in the event of a catastrophic loss of conventional flight controls. Control laws were designed to control the flight path and bank angle using only commands to the throttles. While the program was highly successful, this paper concentrates on the challenges encountered using engine thrust as the only control effector. Compared to conventional flight control surfaces, the engines are slow, nonlinear, and have limited control effectiveness. This increases the vulnerability of the system to outside disturbances and changes in aerodynamic conditions. As a result, the PCA system had problems with gust rejection. Cross coupling of the longitudinal and lateral axis also occured, primarily as a result of control saturation. The normally negligible effects of inlet airframe interactions became significant with the engines as the control effector. Flight and simulation data are used to illustrate these difficulties.