Associative Memory Models of Hippocampal Areas CA1 and CA3

The hippocampal regions CA3 and CA1 have long been proposed to be autoand heteroassociative memories, respectively (Marr, 1971; McNaughton and Morris, 1987; Treves and Rolls, 1994), for the storage of declarative information. An autoassociative memory is formed when a set of neurons are recurrently connected by modifiable synapses, whereas a heteroassociative memory is formed through modifiable connections from an input layer of neurons to an output layer. Associative memory storage simply requires a Hebbian strengthening of connections between neurons that are coactive (Amit, 1989; Hopfield, 1982; Willshaw et al., 1969). Recall proceeds from a cue activity pattern across neurons that is a partial or noisy version of a previously stored pattern. A suitable firing threshold on each neuron that receives input from already active neurons ensures that neural activity evolves towards the stored pattern. This may happen with only one or two updates of each neuron’s activity.

[1]  Michael E Hasselmo,et al.  GABA(B) presynaptic inhibition has an in vivo time constant sufficiently rapid to allow modulation at theta frequency. , 2002, Journal of neurophysiology.

[2]  Bruce P. Graham,et al.  How Bursts Shape the STDP Curve in the Presence/Absence of GABAergic Inhibition , 2009, ICANN.

[3]  Michael E. Hasselmo,et al.  A Proposed Function for Hippocampal Theta Rhythm: Separate Phases of Encoding and Retrieval Enhance Reversal of Prior Learning , 2002, Neural Computation.

[4]  Menno P. Witter,et al.  Place Cells and Place Recognition Maintained by Direct Entorhinal-Hippocampal Circuitry , 2002, Science.

[5]  J. Knierim,et al.  Hippocampal place cells: Parallel input streams, subregional processing, and implications for episodic memory , 2006, Hippocampus.

[6]  Marco Idiart,et al.  Memory retrieval time and memory capacity of the CA3 network: role of gamma frequency oscillations. , 2007, Learning & memory.

[7]  Leif H. Finkel,et al.  Neuromodulatory control of hippocampal function: towards a model of Alzheimer's disease , 1998, Artif. Intell. Medicine.

[8]  Bruce P. Graham,et al.  Improving Recall in an Associative Neural Network of Spiking Neurons , 2007, Summer School on Neural Networks.

[9]  O. Paulsen,et al.  A model of hippocampal memory encoding and retrieval: GABAergic control of synaptic plasticity , 1998, Trends in Neurosciences.

[10]  D. Amaral,et al.  Organization of intrahippocampal projections originating from CA3 pyramidal cells in the rat , 1990, The Journal of comparative neurology.

[11]  Giorgio A Ascoli,et al.  Signal propagation in oblique dendrites of CA1 pyramidal cells. , 2005, Journal of neurophysiology.

[12]  E. Schuman,et al.  Direct cortical input modulates plasticity and spiking in CA1 pyramidal neurons , 2002, Nature.

[13]  M. Stewart,et al.  Current source density analysis of the hippocampal theta rhythm: associated sustained potentials and candidate synaptic generators , 1993, Brain Research.

[14]  D. Amaral,et al.  The three-dimensional organization of the hippocampal formation: A review of anatomical data , 1989, Neuroscience.

[15]  B. Graham,et al.  Pattern recognition in a compartmental model of a CA1 pyramidal neuron , 2001, Network.

[16]  Morten Raastad,et al.  Conduction latency along CA3 hippocampal axons from rat , 2003, Hippocampus.

[17]  John Rinzel,et al.  Intrinsic and network rhythmogenesis in a reduced traub model for CA3 neurons , 1995, Journal of Computational Neuroscience.

[18]  G. Buzsáki,et al.  Interneurons of the hippocampus , 1998, Hippocampus.

[19]  G. Buzsáki,et al.  Temporal structure in spatially organized neuronal ensembles: a role for interneuronal networks , 1995, Current Opinion in Neurobiology.

[20]  P. Somogyi,et al.  The hippocampal CA3 network: An in vivo intracellular labeling study , 1994, The Journal of comparative neurology.

[21]  Panayiota Poirazi,et al.  Modulation of excitability in CA1 pyramidal neurons via the interplay of entorhinal cortex and CA3 inputs , 2007, Neurocomputing.

[22]  Bruce P. Graham,et al.  Encoding and Retrieval in a CA1 Microcircuit Model of the Hippocampus , 2008, ICANN.

[23]  D Marr,et al.  Simple memory: a theory for archicortex. , 1971, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[24]  P. Somogyi,et al.  Brain-state- and cell-type-specific firing of hippocampal interneurons in vivo , 2003, Nature.

[25]  B. McNaughton,et al.  Hippocampal synaptic enhancement and information storage within a distributed memory system , 1987, Trends in Neurosciences.

[26]  James J. Knierim,et al.  Ensemble Dynamics of Hippocampal Regions CA3 and CA1 , 2004, Neuron.

[27]  P. J. Sjöström,et al.  Dendritic excitability and synaptic plasticity. , 2008, Physiological reviews.

[28]  Vassilis Cutsuridis,et al.  Storage and recall in the CA1 microcircuit of the hippocampus: a biophysical model , 2007, BMC Neuroscience.

[29]  György Buzsáki,et al.  Synaptic Plasticity in the Hippocampus , 1988, Springer Berlin Heidelberg.

[30]  M. Hasselmo,et al.  GABAergic modulation of hippocampal population activity: sequence learning, place field development, and the phase precession effect. , 1997, Journal of neurophysiology.

[31]  Bruce P. Graham,et al.  Dynamical Information Processing in the CA1 Microcircuit of the Hippocampus , 2009 .

[32]  P. Somogyi,et al.  Defined types of cortical interneurone structure space and spike timing in the hippocampus , 2005, The Journal of physiology.

[33]  D. Johnston,et al.  Active dendrites reduce location-dependent variability of synaptic input trains. , 1997, Journal of neurophysiology.

[34]  P. Jonas,et al.  Synaptic mechanisms of synchronized gamma oscillations in inhibitory interneuron networks , 2007, Nature Reviews Neuroscience.

[35]  M. Hasselmo,et al.  Encoding and retrieval in the CA3 region of the hippocampus: a model of theta-phase separation. , 2005, Journal of neurophysiology.

[36]  J E Lisman,et al.  Storage of 7 +/- 2 short-term memories in oscillatory subcycles , 1995, Science.

[37]  J J Hopfield,et al.  Neural networks and physical systems with emergent collective computational abilities. , 1982, Proceedings of the National Academy of Sciences of the United States of America.

[38]  P. Somogyi,et al.  Spike timing of dendrite-targeting bistratified cells during hippocampal network oscillations in vivo , 2004, Nature Neuroscience.

[39]  Szabolcs Káli,et al.  Distinct properties of two major excitatory inputs to hippocampal pyramidal cells: a computational study , 2005, The European journal of neuroscience.

[40]  HighWire Press Philosophical Transactions of the Royal Society of London , 1781, The London Medical Journal.

[41]  T. Bliss,et al.  The Hippocampus Book , 2006 .

[42]  Daniel J. Amit,et al.  Modeling brain function: the world of attractor neural networks, 1st Edition , 1989 .

[43]  Bartlett W. Mel,et al.  Arithmetic of Subthreshold Synaptic Summation in a Model CA1 Pyramidal Cell , 2003, Neuron.

[44]  T. Freund,et al.  GABA-containing neurons in the septum control inhibitory interneurons in the hippocampus , 1988, Nature.

[45]  J. Fell,et al.  Memory formation by neuronal synchronization , 2006, Brain Research Reviews.

[46]  E. Rolls,et al.  Computational analysis of the role of the hippocampus in memory , 1994, Hippocampus.

[47]  W B Levy,et al.  A sequence predicting CA3 is a flexible associator that learns and uses context to solve hippocampal‐like tasks , 1996, Hippocampus.

[48]  L. Dobrunz,et al.  Mechanisms of target‐cell specific short‐term plasticity at Schaffer collateral synapses onto interneurones versus pyramidal cells in juvenile rats , 2005, The Journal of physiology.

[49]  Bruce P. Graham,et al.  A CA2+ Dynamics Model of the STDP Symmetry-to-Asymmetry Transition in the CA1 Pyramidal Cell of the Hippocampus , 2008, ICANN.

[50]  J. Lacaille,et al.  Interneuron Diversity series: Hippocampal interneuron classifications – making things as simple as possible, not simpler , 2003, Trends in Neurosciences.

[51]  Nace L. Golding,et al.  Dendritic spikes as a mechanism for cooperative long-term potentiation , 2002, Nature.

[52]  Ivan Soltesz,et al.  Role of mossy fiber sprouting and mossy cell loss in hyperexcitability: a network model of the dentate gyrus incorporating cell types and axonal topography. , 2005, Journal of neurophysiology.

[53]  Thomas Wennekers,et al.  Modelling studies on the computational function of fast temporal structure in cortical circuit activity , 2000, Journal of Physiology-Paris.

[54]  Peter Somogyi,et al.  Anti-Hebbian Long-Term Potentiation in the Hippocampal Feedback Inhibitory Circuit , 2007, Science.

[55]  K. J. Canning,et al.  Entorhinal inputs to hippocampal CA1 and dentate gyrus in the rat: a current-source-density study. , 1995, Journal of neurophysiology.

[56]  Michael E. Hasselmo,et al.  Neuromodulation, theta rhythm and rat spatial navigation , 2002, Neural Networks.

[57]  Bartlett W. Mel,et al.  Pyramidal Neuron as Two-Layer Neural Network , 2003, Neuron.

[58]  Vassilis Cutsuridis,et al.  Encoding and retrieval in a model of the hippocampal CA1 microcircuit , 2009, Hippocampus.

[59]  H. C. LONGUET-HIGGINS,et al.  Non-Holographic Associative Memory , 1969, Nature.

[60]  P. Somogyi,et al.  Neuronal Diversity and Temporal Dynamics: The Unity of Hippocampal Circuit Operations , 2008, Science.

[61]  Thomas Wennekers,et al.  Hippocampus, microcircuits and associative memory , 2009, Neural Networks.

[62]  Robert C. Malenka,et al.  Synaptic plasticity in the hippocampus: LTP and LTD , 1994, Cell.

[63]  Bruce P. Graham,et al.  Improving Associative Memory in a Network of Spiking Neurons , 2008, ICANN.

[64]  M. Hasselmo,et al.  Size of CA1-evoked synaptic potentials is related to theta rhythm phase in rat hippocampus. , 2000, Journal of neurophysiology.

[65]  Thomas Wennekers,et al.  Associative memory in networks of spiking neurons , 2001, Neural Networks.

[66]  F. Saraga,et al.  Active dendrites and spike propagation in multicompartment models of oriens‐lacunosum/moleculare hippocampal interneurons , 2003, The Journal of physiology.