An orbital localization criterion based on the theory of “fuzzy” atoms

This work proposes a new procedure for localizing molecular and natural orbitals. The localization criterion presented here is based on the partitioning of the overlap matrix into atomic contributions within the theory of “fuzzy” atoms. Our approach has several advantages over other schemes: it is computationally inexpensive, preserves the σ/π‐separability in planar systems and provides a straightforward interpretation of the resulting orbitals in terms of their localization indices and atomic occupancies. The corresponding algorithm has been implemented and its efficiency tested on selected molecular systems. © 2006 Wiley Periodicals, Inc. J Comput Chem 27: 596–608, 2006

[1]  W. Niessen,et al.  Density localization of atomic and molecular orbitals , 1973 .

[2]  P. Salvador,et al.  Energy partitioning for "fuzzy" atoms. , 2004, The Journal of chemical physics.

[3]  R. Kari Parametrization and comparative analysis of the BFGS optimization algorithm for the determination of optimum linear coefficients , 1984 .

[4]  E. Davidson,et al.  Population analyses that utilize projection operators , 2003 .

[5]  R. Bader Atoms in molecules : a quantum theory , 1990 .

[6]  J. Linnett,et al.  A Modification of the Lewis-Langmuir Octet Rule , 1961 .

[7]  S. F. Boys,et al.  Canonical Configurational Interaction Procedure , 1960 .

[8]  Yang,et al.  Direct calculation of electron density in density-functional theory. , 1991, Physical review letters.

[9]  F. L. Hirshfeld Bonded-atom fragments for describing molecular charge densities , 1977 .

[10]  Klaus Ruedenberg,et al.  Localized Atomic and Molecular Orbitals , 1963 .

[11]  R. S. Mulliken Electronic Population Analysis on LCAO–MO Molecular Wave Functions. I , 1955 .

[12]  R. Bader Atoms in molecules , 1990 .

[13]  H. Eyring,et al.  Localized Orbitals in Spectroscopy , 1978 .

[14]  F. Weinhold,et al.  Natural population analysis , 1985 .

[15]  R. Bochicchio,et al.  Treatments of non-nuclear attractors within the theory of atoms in molecules , 2005 .

[16]  R. Mcweeny,et al.  The Theory of Pair-Correlated Wave Functions , 1966 .

[17]  H. V. Hart,et al.  Effect of High Pressure on the Lattice Parameters of Al2O3 , 1965 .

[18]  R. Bochicchio,et al.  Determination of three-center bond indices from population analyses: a fuzzy atom treatment. , 2005, The journal of physical chemistry. A.

[19]  A. Becke A multicenter numerical integration scheme for polyatomic molecules , 1988 .

[20]  Ernest R. Davidson,et al.  A test of the Hirshfeld definition of atomic charges and moments , 1992 .

[21]  Paul G. Mezey,et al.  A fast intrinsic localization procedure applicable for ab initio and semiempirical linear combination of atomic orbital wave functions , 1989 .

[22]  R. Bochicchio,et al.  A study of the partitioning of the first-order reduced density matrix according to the theory of atoms in molecules. , 2005, The Journal of chemical physics.

[23]  Thomas A. Halgren,et al.  Localized molecular orbitals for polyatomic molecules. I. A comparison of the Edmiston-Ruedenberg and Boys localization methods , 1974 .

[24]  J. Cioslowski Isopycnic orbital transformations and localization of natural orbitals , 1990 .

[25]  David N. Beratan,et al.  Localized orbitals and the Fermi hole , 1982 .

[26]  Á. M. Pendás,et al.  Non-nuclear Maxima of the Electron Density , 1999 .

[27]  J. Cioslowski Partitioning of the orbital overlap matrix and the localization criteria , 1991 .

[28]  P. Salvador,et al.  Overlap populations, bond orders and valences for fuzzy atoms , 2004 .

[29]  Frank Weinhold,et al.  Natural localized molecular orbitals , 1985 .

[30]  R. Glaser,et al.  Origin and consequences of the nonnuclear attractor in the ab initio electron density functions of dilithium , 1990 .

[31]  R. Bochicchio,et al.  Energy decompositions according to physical space partitioning schemes. , 2005, The Journal of chemical physics.

[32]  Klaus Ruedenberg,et al.  Localized Atomic and Molecular Orbitals. II , 1965 .

[33]  J. Leonard,et al.  Quadratically convergent calculation of localized molecular orbitals , 1982 .