Computational design of a new palladium alloy with efficient hydrogen storage capacity and hydrogenation-dehydrogenation kinetics

[1]  Young-Su Lee,et al.  Computational design of novel MAX phase alloys as potential hydrogen storage media combining first principles and cluster expansion methods. , 2022, Physical chemistry chemical physics : PCCP.

[2]  E. Yu,et al.  Theoretical prediction of structure, electronic and optical properties of VH2 hydrogen storage material , 2022, International Journal of Hydrogen Energy.

[3]  J. Eckert,et al.  Multilayer crystal-amorphous Pd-based nanosheets on Si/SiO2 with interface-controlled ion transport for efficient hydrogen storage , 2021, International Journal of Hydrogen Energy.

[4]  P. Erhart,et al.  Hydrogen-Driven Surface Segregation in Pd Alloys from Atomic-Scale Simulations , 2021, The Journal of Physical Chemistry C.

[5]  M. Vandichel,et al.  Oxygen-Evolution Reaction by a Palladium Foil in the Presence of Iron. , 2021, Inorganic chemistry.

[6]  P. Gajjar,et al.  Ultrathin Pd and Pt nanowires for potential applications as hydrogen economy , 2020 .

[7]  J. Qin,et al.  Constructing MoS2/g-C3N4 heterojunction with enhanced oxygen evolution reaction activity: A theoretical insight , 2020 .

[8]  M. Salavati‐Niasari,et al.  Hydrothermal synthesis of DyMn2O5/Ba3Mn2O8 nanocomposite as a potential hydrogen storage material , 2019, International Journal of Hydrogen Energy.

[9]  Y. Kojima Hydrogen storage materials for hydrogen and energy carriers , 2019, International Journal of Hydrogen Energy.

[10]  Stefan Grönkvist,et al.  Large-scale storage of hydrogen , 2019, International Journal of Hydrogen Energy.

[11]  Tong Liu,et al.  Recent advances in magnesium-based hydrogen storage materials with multiple catalysts , 2019, International Journal of Hydrogen Energy.

[12]  Matthew G. Quesne,et al.  Hydrogen adsorption on transition metal carbides: a DFT study. , 2019, Physical chemistry chemical physics : PCCP.

[13]  Alastair D. Stuart,et al.  Application of hydrides in hydrogen storage and compression: Achievements, outlook and perspectives , 2019, International Journal of Hydrogen Energy.

[14]  Maciej Haranczyk,et al.  An assessment of strategies for the development of solid-state adsorbents for vehicular hydrogen storage , 2018 .

[15]  S. Akbayrak,et al.  Ammonia borane as hydrogen storage materials , 2018, International Journal of Hydrogen Energy.

[16]  M. Milun,et al.  Acceleration of hydrogen absorption by palladium through surface alloying with gold , 2018, Proceedings of the National Academy of Sciences.

[17]  Min Zhu,et al.  Recent advances and remaining challenges of nanostructured materials for hydrogen storage applications , 2017 .

[18]  F. Illas,et al.  Adsorption and dissociation of molecular hydrogen on orthorhombic β- Mo2C and cubic δ-MoC (001) surfaces , 2017 .

[19]  U. Waghmare,et al.  An improved d-band model of the catalytic activity of magnetic transition metal surfaces , 2016, Scientific Reports.

[20]  J. Szpunar,et al.  Hydrogen Storage Performance in Pd/Graphene Nanocomposites. , 2016, ACS applied materials & interfaces.

[21]  S. Zhang,et al.  Tailoring graphene magnetism by zigzag triangular holes: A first-principles thermodynamics study , 2016 .

[22]  H. Nakanishi,et al.  Quantum states of hydrogen atom on Pd(1 1 0) surface , 2015 .

[23]  S. Dutta A review on production, storage of hydrogen and its utilization as an energy resource , 2014 .

[24]  Dandan Sun,et al.  Two-dimensional Sc2C: A reversible and high-capacity hydrogen storage material predicted by first-principles calculations , 2014 .

[25]  Quan Xu,et al.  N-doped graphene as catalysts for oxygen reduction and oxygen evolution reactions: Theoretical considerations , 2014 .

[26]  D. J. Durbin,et al.  Review of hydrogen storage techniques for on board vehicle applications , 2013 .

[27]  H. Kasai,et al.  Hydrogen absorption and hydrogen-induced reverse segregation in palladium–silver surface , 2013 .

[28]  Xiao-Ming Jiang,et al.  High-Performance and Long-Lived Pd Nanocatalyst Directed by Shape Effect for CO Oxidative Coupling to Dimethyl Oxalate , 2013 .

[29]  H. Kasai,et al.  Ab initio Investigation of Hydrogen Atom Adsorption and Absorption on Pd(110) Surface , 2012 .

[30]  Bernd Müller,et al.  Fuel cell electric vehicles and hydrogen infrastructure: status 2012 , 2012 .

[31]  S. Srivastava,et al.  Investigations of AB5-type hydrogen storage materials with enhanced hydrogen storage capacity , 2011 .

[32]  X. Yao,et al.  Progress in sodium borohydride as a hydrogen storage material: Development of hydrolysis catalysts a , 2011 .

[33]  Chhagan Lal,et al.  Hydrogen storage in Mg: A most promising material , 2010 .

[34]  Hiroshi Kitagawa,et al.  Hydrogen storage mediated by Pd and Pt nanoparticles. , 2009, Chemphyschem : a European journal of chemical physics and physical chemistry.

[35]  B. Adams,et al.  Facile synthesis of Pd-Cd nanostructures with high capacity for hydrogen storage. , 2009, Journal of the American Chemical Society.

[36]  Xin-bo Zhang,et al.  Boron- and nitrogen-based chemical hydrogen storage materials , 2009 .

[37]  G. Henkelman,et al.  A grid-based Bader analysis algorithm without lattice bias , 2009, Journal of physics. Condensed matter : an Institute of Physics journal.

[38]  Hiroshi Kitagawa,et al.  Nanosize Effects on Hydrogen Storage in Palladium , 2008 .

[39]  M. Tsukahara,et al.  Hydrogen storage properties of Mg/Cu and Mg/Pd laminate composites and metallographic structure , 2007 .

[40]  J. Nørskov,et al.  Electrolysis of water on oxide surfaces , 2007 .

[41]  Stefan Grimme,et al.  Semiempirical GGA‐type density functional constructed with a long‐range dispersion correction , 2006, J. Comput. Chem..

[42]  J. Wilcox,et al.  Achieving optimum hydrogen permeability in PdAg and PdAu alloys. , 2006, The Journal of chemical physics.

[43]  G. Henkelman,et al.  A fast and robust algorithm for Bader decomposition of charge density , 2006 .

[44]  Martin Head-Gordon,et al.  Computational studies of molecular hydrogen binding affinities: the role of dispersion forces, electrostatics, and orbital interactions. , 2006, Physical chemistry chemical physics : PCCP.

[45]  P. Weiss,et al.  Observation and manipulation of subsurface hydride in Pd[111] and its effect on surface chemical, physical, and electronic properties. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[46]  A. Williamson,et al.  Chemisorption on semiconductor nanocomposites: A mechanism for hydrogen storage , 2004 .

[47]  S. Srivastava On the synthesis and characterization of some new AB5 type MmNi4.3Al0.3Mn0.4, LaNi5-xSix (x = 0.1, 0.3, 0.5) and Mg-x wt% CFMmNi5-y wt% Si hydrogen storage materials , 2000 .

[48]  Craig M. Jensen,et al.  Advanced titanium doping of sodium aluminum hydride:: segue to a practical hydrogen storage material? , 1999 .

[49]  G. Kresse,et al.  From ultrasoft pseudopotentials to the projector augmented-wave method , 1999 .

[50]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[51]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.

[52]  G. Kresse,et al.  Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set , 1996 .

[53]  Jens K. Nørskov,et al.  Electronic factors determining the reactivity of metal surfaces , 1995 .

[54]  Blöchl,et al.  Projector augmented-wave method. , 1994, Physical review. B, Condensed matter.

[55]  A. N. Syverud,et al.  JANAF Thermochemical Tables, 1982 Supplement , 1982 .

[56]  D. M. Newns Self-Consistent Model of Hydrogen Chemisorption , 1969 .

[57]  Kondo‐François Aguey‐Zinsou,et al.  Tailoring magnesium based materials for hydrogen storage through synthesis: Current state of the art , 2018 .

[58]  John T. S. Irvine,et al.  Ammonia and related chemicals as potential indirect hydrogen storage materials , 2012 .