Modeling Turning Points in Financial Markets with Soft Computing Techniques

Two independent evolutionary modeling methods, based on fuzzy logic and neural networks respectively, are applied to predicting trend reversals in financial time series of the financial instruments S&P 500, crude oil and gold, and their performances are compared. Both methods are found to give essentially the same results, indicating that trend reversals are partially predictable.

[1]  Lotfi A. Zadeh,et al.  The Concepts of a Linguistic Variable and its Application to Approximate Reasoning , 1975 .

[2]  S. Achelis Technical analysis a to z , 1994 .

[3]  Xin Yao,et al.  A new evolutionary system for evolving artificial neural networks , 1997, IEEE Trans. Neural Networks.

[4]  Andrea G. B. Tettamanzi,et al.  AN EVOLUTIONARY ALGORITHM FOR FUZZY CONTROLLER SYNTHESIS AND OPTIMIZATION BASED ON SGS-THOMSON'S W.A.R.P. FUZZY PROCESSOR , 1997 .

[5]  Xin Yao,et al.  Evolutionary Optimization , 2002 .

[6]  Antonia Azzini,et al.  A New Genetic Approach for Neural Network Design , 2008, Engineering Evolutionary Intelligent Systems.

[7]  Takanori Shibata,et al.  Genetic Algorithms And Fuzzy Logic Systems Soft Computing Perspectives , 1997 .

[8]  Zbigniew Michalewicz,et al.  Evolutionary Computation 1 , 2018 .

[9]  Heinz Mühlenbein,et al.  The Science of Breeding and Its Application to the Breeder Genetic Algorithm (BGA) , 1993, Evolutionary Computation.

[10]  Anthony Brabazon,et al.  Biologically inspired algorithms for financial modelling , 2006, Natural computing series.

[11]  Hans Hellendoorn,et al.  Defuzzification in Fuzzy Controllers , 1993, J. Intell. Fuzzy Syst..

[12]  Andrea G. B. Tettamanzi An evolutionary algorithm for fuzzy controller synthesis and optimization , 1995, 1995 IEEE International Conference on Systems, Man and Cybernetics. Intelligent Systems for the 21st Century.

[13]  Lotfi A. Zadeh,et al.  Fuzzy Sets , 1996, Inf. Control..

[14]  Elie Sanchez,et al.  Soft computing perspectives , 1994, Proceedings of 24th International Symposium on Multiple-Valued Logic (ISMVL'94).

[15]  Lotfi A. Zadeh,et al.  The Calculus of Fuzzy If/Then Rules , 1992, Fuzzy Days.

[16]  Brad G. Kyer Review of 5 of biologically inspired algorithms for financial modelling by Anthony Brabazon, Michael O'Neill Springer-Verlag Berlin Heidelberg, 2006 , 2010, SIGA.

[17]  Célia da Costa Pereira,et al.  Fuzzy-Evolutionary Modeling for Single-Position Day Trading , 2008, Natural Computing in Computational Finance.

[18]  Antonia Azzini,et al.  Evolving neural networks for static single-position automated trading , 2008 .

[19]  Antonia Azzini,et al.  A neural evolutionary approach to financial modeling , 2006, GECCO '06.

[20]  Xin Yao,et al.  Evolving artificial neural networks , 1999, Proc. IEEE.

[21]  Antonia Azzini,et al.  Evolutionary Single-Position Automated Trading , 2008, EvoWorkshops.

[22]  Anthony Brabazon,et al.  Natural Computing in Computational Finance , 2008, Natural Computing in Computational Finance.

[23]  E. H. Mamdani,et al.  Advances in the linguistic synthesis of fuzzy controllers , 1976 .

[24]  Edgar E. Peters Chaos and order in the capital markets , 1991 .