Model-based optimal design of experiments - semidefinite and nonlinear programming formulations.

We use mathematical programming tools, such as Semidefinite Programming (SDP) and Nonlinear Programming (NLP)-based formulations to find optimal designs for models used in chemistry and chemical engineering. In particular, we employ local design-based setups in linear models and a Bayesian setup in nonlinear models to find optimal designs. In the latter case, Gaussian Quadrature Formulas (GQFs) are used to evaluate the optimality criterion averaged over the prior distribution for the model parameters. Mathematical programming techniques are then applied to solve the optimization problems. Because such methods require the design space be discretized, we also evaluate the impact of the discretization scheme on the generated design. We demonstrate the techniques for finding D-, A- and E-optimal designs using design problems in biochemical engineering and show the method can also be directly applied to tackle additional issues, such as heteroscedasticity in the model. Our results show that the NLP formulation produces highly efficient D-optimal designs but is computationally less efficient than that required for the SDP formulation. The efficiencies of the generated designs from the two methods are generally very close and so we recommend the SDP formulation in practice.

[1]  Roman Guchenko Optimal Discriminating Designs , 2016 .

[2]  Holger Dette,et al.  Design of experiments for microbiological models , 2003 .

[3]  W. G. Hunter,et al.  The Experimental Study of Physical Mechanisms , 1965 .

[4]  Toby J. Mitchell,et al.  An algorithm for the construction of “ D -optimal” experimental designs , 2000 .

[5]  Guillaume Sagnol,et al.  Computing Optimal Designs of multiresponse Experiments reduces to Second-Order Cone Programming , 2009, 0912.5467.

[6]  Weng Kee Wong,et al.  Finding Bayesian Optimal Designs for Nonlinear Models: A Semidefinite Programming‐Based Approach , 2015, International statistical review = Revue internationale de statistique.

[7]  Arne Drud,et al.  CONOPT: A GRG code for large sparse dynamic nonlinear optimization problems , 1985, Math. Program..

[8]  J. Kiefer,et al.  The Equivalence of Two Extremum Problems , 1960, Canadian Journal of Mathematics.

[9]  Stephen P. Boyd,et al.  Applications of semidefinite programming , 1999 .

[10]  S. Mandal,et al.  Two classes of multiplicative algorithms for constructing optimizing distributions , 2006, Comput. Stat. Data Anal..

[11]  Radoslav Harman,et al.  Computing maximin efficient experimental designs using the methods of semidefinite programming , 2011, Metrika.

[12]  Stephen P. Boyd,et al.  Semidefinite Programming , 1996, SIAM Rev..

[13]  Jos F. Sturm,et al.  A Matlab toolbox for optimization over symmetric cones , 1999 .

[14]  F. Pukelsheim Optimal Design of Experiments , 1993 .

[15]  Luc Pronzato,et al.  Optimal experimental design and some related control problems , 2008, Autom..

[16]  J. Kiefer General Equivalence Theory for Optimum Designs (Approximate Theory) , 1974 .

[17]  Andrej Pázman,et al.  Foundations of Optimum Experimental Design , 1986 .

[18]  Weng Kee Wong,et al.  A unified approach to the construction of minimax designs , 1992 .

[19]  Panos M. Pardalos,et al.  Introduction to Global Optimization , 2000, Introduction to Global Optimization.

[20]  Arkadi Nemirovski,et al.  Lectures on modern convex optimization - analysis, algorithms, and engineering applications , 2001, MPS-SIAM series on optimization.

[21]  Muriel Bigan,et al.  Efficient size control of amphiphilic cyclodextrin nanoparticles through a statistical mixture design methodology. , 2005, Journal of pharmacy & pharmaceutical sciences : a publication of the Canadian Society for Pharmaceutical Sciences, Societe canadienne des sciences pharmaceutiques.

[22]  Eligius M. T. Hendrix,et al.  Global Optimization Problems in Optimal Design of Experiments in Regression Models , 2000, J. Glob. Optim..

[23]  Heinz Holling,et al.  Optimal Designs for Asymmetric Linear Paired Comparisons with a Profile Strength Constraint , 2006 .

[24]  A. A. Zhigli︠a︡vskiĭ,et al.  Stochastic Global Optimization , 2007 .

[25]  R. Reid,et al.  The Properties of Gases and Liquids , 1977 .

[26]  Ilya S. Molchanov,et al.  Steepest descent algorithms in a space of measures , 2002, Stat. Comput..

[27]  Nikolaos V. Sahinidis,et al.  Convexification and Global Optimization in Continuous and Mixed-Integer Nonlinear Programming , 2002 .

[28]  Yinyu Ye,et al.  Interior point algorithms: theory and analysis , 1997 .

[29]  Holger Dette,et al.  Optimal discrimination designs , 2009, 0908.1912.

[30]  Connie M. Borror,et al.  Model-Robust Optimal Designs: A Genetic Algorithm Approach , 2004 .

[31]  Stephen P. Boyd,et al.  Convex Optimization , 2004, Algorithms and Theory of Computation Handbook.

[32]  Aage Fredenslund,et al.  Vapor−Liquid Equilibria by UNIFAC Group Contribution. 6. Revision and Extension , 1979 .

[33]  K. Kortanek,et al.  Equivalence Theorems and Cutting Plane Algorithms for a Class of Experimental Design Problems , 1977 .

[34]  W. J. Studden,et al.  Theory Of Optimal Experiments , 1972 .

[35]  John C. Plummer,et al.  A Multistart Scatter Search Heuristic for Smooth NLP and MINLP Problems , 2005 .

[36]  Houduo Qi,et al.  A semidefinite programming study of the Elfving theorem , 2011 .

[37]  K. Chaloner,et al.  Optimal Bayesian design applied to logistic regression experiments , 1989 .

[38]  P. Whittle Some General Points in the Theory of Optimal Experimental Design , 1973 .

[39]  Weng Kee Wong,et al.  A semi-infinite programming based algorithm for finding minimax optimal designs for nonlinear models , 2014, Stat. Comput..

[40]  Anthony C. Atkinson,et al.  Optimum Experimental Designs, with SAS , 2007 .

[41]  Luc Pronzato,et al.  A delimitation of the support of optimal designs for Kiefer’s ϕp-class of criteria , 2013, 1303.5046.

[42]  D'avid Papp,et al.  Optimal Designs for Rational Function Regression , 2010, 1009.1444.

[43]  H. Wynn Results in the Theory and Construction of D‐Optimum Experimental Designs , 1972 .

[44]  Ying Zhang,et al.  Bayesian D-Optimal Design for Generalized Linear Models , 2006 .

[45]  K. Chaloner,et al.  Bayesian Experimental Design: A Review , 1995 .

[46]  Christodoulos A. Floudas,et al.  Deterministic global optimization - theory, methods and applications , 2010, Nonconvex optimization and its applications.

[47]  Guillaume Sagnol,et al.  On the semidefinite representation of real functions applied to symmetric matrices , 2013 .

[48]  Shan Sun,et al.  A class of adaptive distribution-free procedures , 1997 .

[49]  Kendall E. Atkinson An introduction to numerical analysis , 1978 .

[50]  J. Kiefer,et al.  Time- and Space-Saving Computer Methods, Related to Mitchell's DETMAX, for Finding D-Optimum Designs , 1980 .

[51]  Holger Dette,et al.  Improving updating rules in multiplicative algorithms for computing D-optimal designs , 2008, Comput. Stat. Data Anal..

[52]  Christopher J. Nachtsheim,et al.  Model Robust, Linear-Optimal Designs , 1982 .