Stellarator and tokamak plasmas: a comparison

An overview is given of physics differences between stellarators and tokamaks, including magnetohydrodynamic equilibrium, stability, fast-ion physics, plasma rotation, neoclassical and turbulent transport and edge physics. Regarding microinstabilities, it is shown that the ordinary, collisionless trapped-electron mode is stable in large parts of parameter space in stellarators that have been designed so that the parallel adiabatic invariant decreases with radius. Also, the first global, electromagnetic, gyrokinetic stability calculations performed for Wendelstein 7-X suggest that kinetic ballooning modes are more stable than in a typical tokamak.

[1]  M. Landreman,et al.  Effects of the radial electric field in a quasisymmetric stellarator , 2010 .

[2]  V. Tribaldos,et al.  Neoclassical global flux simulations in stellarators , 2005 .

[3]  H. Mynick,et al.  Optimizing stellarators for turbulent transport. , 2010, Physical review letters.

[4]  S. I. Braginskii Reviews of Plasma Physics , 1965 .

[5]  M. Landreman,et al.  Omnigenity as Generalized Quasisymmetry , 2011, 1112.5725.

[6]  J. Nührenberg,et al.  Development of quasi-isodynamic stellarators , 2010 .

[7]  P. Helander On rapid plasma rotation , 2007 .

[8]  H. E. Mynick,et al.  Transport optimization in stellarators , 2005 .

[9]  P. Merkel,et al.  Three-dimensional free boundary calculations using a spectral Green's function method , 1986 .

[10]  P. Helander,et al.  Collisional transport in magnetized plasmas , 2002 .

[11]  S. Hudson,et al.  Pressure, chaotic magnetic fields, and magnetohydrodynamic equilibria , 2010 .

[12]  T. Morisaki,et al.  Model prediction of impurity retention in stochastic magnetic boundary and comparison with edge carbon emission in LHD , 2009 .

[13]  F. Sardei,et al.  Physics of island divertors as highlighted by the example of W7-AS , 2006 .

[14]  T. Antonsen,et al.  Physical mechanism of enhanced stability from negative shear in tokamaks: Implications for edge transport and the L-H transition , 1996 .

[15]  F. Jenko,et al.  Gyrokinetic analysis of linear microinstabilities for the stellarator Wendelstein 7-X , 2007 .

[16]  J. Nührenberg,et al.  Quasi-Helically Symmetric Toroidal Stellarators , 1988 .

[17]  H. Sugama,et al.  Erratum: “Collisionless damping of zonal flows in helical systems” [Phys. Plasmas 13, 012501 (2006)] , 2007 .

[18]  C. D. Beidler,et al.  Density control problems in large stellarators with neoclassical transport , 1999 .

[19]  H. Sugama,et al.  Effects of equilibrium-scale radial electric fields on zonal flows and turbulence in helical configurations , 2011 .

[20]  R. Kulsrud,et al.  Neoclassical transport in stellarators , 1987 .

[21]  F L Tabarés,et al.  Tritium inventory control during ITER operation under carbon plasma-facing components by nitrogen-based plasma chemistry: a review , 2013 .

[22]  W. Marsden I and J , 2012 .

[23]  R. Kleiber,et al.  Unstable ion-temperature-gradient modes in the Wendelstein 7-X stellarator configuration , 2002 .

[24]  G. Rewoldt,et al.  Comparison of Microinstability Properties for Stellarator Magnetic Geometries , 2005 .

[25]  P. Helander,et al.  Intrinsic ambipolarity and rotation in stellarators. , 2008, Physical review letters.

[26]  P Helander,et al.  Resilience of quasi-isodynamic stellarators against trapped-particle instabilities. , 2012, Physical review letters.

[27]  Boris B. Kadomtsev,et al.  Reviews of Plasma Physics , 2012 .

[28]  Hideo Sugama,et al.  Transport processes and entropy production in toroidal plasmas with gyrokinetic electromagnetic turbulence , 1996 .

[29]  Laurent Villard,et al.  Gyrokinetic global three-dimensional simulations of linear ion-temperature-gradient modes in Wendelstein 7-X , 2004 .

[30]  J. Taylor,et al.  Single Particle Motion in Toroidal Stellarator Fields , 1967 .

[31]  Robert Dewar,et al.  Ballooning mode spectrum in general toroidal systems , 1983 .

[32]  J. Geiger,et al.  On the bootstrap current in stellarators and tokamaks , 2011 .

[33]  P. Helander,et al.  Bootstrap current and neoclassical transport in quasi-isodynamic stellarators , 2009 .

[34]  Allen H. Boozer,et al.  Transport and isomorphic equilibria , 1983 .

[35]  T. Lunt,et al.  Comparison between stellarator and tokamak divertor transport , 2011 .

[36]  W. Dorland,et al.  Simulating gyrokinetic microinstabilities in stellarator geometry with GS2 , 2011, 1109.4558.

[37]  P. Helander,et al.  Plasma rotation in a quasi-symmetric stellarator , 2011 .

[38]  K. McCormick,et al.  Major results from the stellarator Wendelstein 7-AS , 2008 .

[39]  P. Merkel,et al.  Formation and ‘self‐healing’ of magnetic islands in finite‐β Helias equilibria , 1994 .

[40]  P. Helander,et al.  Oscillations of zonal flows in stellarators , 2011 .

[41]  L. Kovrizhnykh The energy confinement time in stellarators , 1984 .

[42]  J. Connor,et al.  Stability of the trapped electron mode in steep density and temperature gradients , 2006 .

[43]  L. S. Hall,et al.  Three‐dimensional equilibrium of the anisotropic, finite‐pressure guiding‐center plasma: Theory of the magnetic plasma , 1975 .

[44]  R. Dewar,et al.  Stellarator stability with respect to global kinetic ballooning modes , 2006 .

[45]  James D. Callen,et al.  Stability of bootstrap current driven magnetic islands in stellarators , 1994 .

[46]  M. Rosenbluth,et al.  Toroidal ion‐pressure‐gradient‐driven drift instabilities and transport revisited , 1989 .

[47]  C. Hegna Plasma flow healing of magnetic islands in stellaratorsa) , 2012 .

[48]  Bill Scott,et al.  Fluid simulations of edge turbulence for stellarators and axisymmetric configurations , 2005 .

[49]  H. Sugama,et al.  Quasisymmetric toroidal plasmas with large mean flows , 2011 .

[50]  Allen H. Boozer,et al.  Physics of magnetically confined plasmas , 2005 .

[51]  W. Tang,et al.  Destabilization of the trapped-electron mode by magnetic curvature drift resonances , 1976 .

[52]  Olivier Sauter,et al.  Theory of Fusion Plasmas , 2007 .

[53]  David R. Smith,et al.  Suppressing Electron Turbulence and Triggering Internal Transport Barriers with Reversed Magnetic Shear in the National Spherical Torus Experiment , 2012 .

[54]  H. Yamada,et al.  Transport Characteristics in the Stochastic Magnetic Boundary of LHD: Magnetic Field Topology and Its Impact on Divertor Physics and Impurity Transport , 2010 .

[55]  Donald Monticello,et al.  PIES Free Boundary Stellarator Equilibria with Improved Initial Conditions , 2005 .

[56]  H. Grad TOROIDAL CONTAINMENT OF A PLASMA. , 1967 .

[57]  H. Yamada,et al.  Comparative divertor-transport study for helical devices , 2009 .

[58]  J. Cary,et al.  Omnigenity and quasihelicity in helical plasma confinement systems , 1997 .

[59]  Hideo Sugama,et al.  Abstract Submitted for the DPP05 Meeting of The American Physical Society Collisionless Damping of Zonal Flows in Helical Systems , 2012 .

[60]  Allen H. Boozer,et al.  Quasi-helical symmetry in stellarators , 1995 .

[61]  A. Könies,et al.  Affinity and difference between energetic-ion-driven instabilities in 2D and 3D toroidal systems , 2011 .

[62]  R. Waltz,et al.  Local shear in general magnetic stellarator geometry , 1993 .

[63]  R. L. Dewar,et al.  Non-axisymmetric, multi-region relaxed magnetohydrodynamic equilibrium solutions , 2011, 1107.5202.

[64]  C. Lashmore-Davies Collisional Transport in Magnetized Plasmas, by Per Helander and Dieter J. Sigmar, Cambridge Monograph on Plasma Physics, Cambridge University Press (2002) , 2004, Journal of Plasma Physics.

[65]  C. Mercier,et al.  Equilibrium and stability of a toroidal magnetohydrodynamic system in the neighbourhood of a magnetic axis , 1964 .

[66]  J. Connor,et al.  Stability of general plasma equilibria. III , 1980 .

[67]  W. A. Cooper,et al.  Integrated physics optimization of a quasi-isodynamic stellarator with poloidally closed contours of the magnetic field strength , 2006 .

[68]  W. A. Cooper,et al.  Drift Stabilisation of Ballooning Modes in an Inward‐Shifted LHD Configuration , 2010 .

[69]  H. Yamada,et al.  Dependence of spontaneous growth and suppression of the magnetic island on beta and collisionality in the LHD , 2008 .

[70]  C. D. Beidler,et al.  Neoclassical transport simulations for stellarators , 2011 .

[71]  A. Wakasa,et al.  Results from the International Collaboration on Neoclassical Transport in Stellarators (ICNTS) , 2009 .

[72]  D. Gates,et al.  Origin of tokamak density limit scalings. , 2012, Physical review letters.

[73]  V. Shafranov,et al.  Neoclassical transport in stellarators without collisionless ion loss , 2008 .

[74]  L. Spitzer The Stellarator Concept , 1958, IEEE Transactions on Plasma Science.

[75]  M. Greenwald Density limits in toroidal plasmas , 2002 .

[76]  David A. Garren,et al.  Existence of quasihelically symmetric stellarators , 1991 .

[77]  W Vii-A Team,et al.  Stabilization of the (2, 1) tearing mode and of the current disruption in the W VII–A stellarator , 1980 .

[78]  Bruce D. Scott,et al.  Transition from tokamak to stellarator turbulence , 2000 .

[79]  Hideo Sugama,et al.  Gyrokinetic simulation of zonal flows and ion temperature gradient turbulence in helical systems , 2007 .