The Well-Posedness of Fractional Systems with Affine-Periodic Boundary Conditions

This paper is devoted to study the existence and uniqueness of solutions for a class of nonlinear fractional dynamical systems with affine-periodic boundary conditions. We can show that there exists a solution for an $$\alpha $$ α -fractional system via the homotopy invariance of Brouwer degree, where $$0<\alpha \le 1$$ 0 < α ≤ 1 . Furthermore, using Gronwall–Bellman inequality, we can prove the uniqueness of the solution if the nonlinearity satisfies the Lipschitz continuity. We apply the main theorem to the fractional kinetic equation and fractional oscillator with constant coefficients subject to affine-periodic boundary conditions. And in appendix, we give the proof of the nonexistence of affine-periodic solution to a given $$(\alpha ,Q,T)$$ ( α , Q , T ) -affine-periodic system in the sense of Riemann–Liouville fractional integral and Caputo derivative for $$0<\alpha <1$$ 0 < α < 1 .

[1]  George M. Zaslavsky,et al.  Fractional kinetic equation for Hamiltonian chaos , 1994 .

[2]  Chuanzhi Bai,et al.  Periodic boundary value problems for nonlinear impulsive fractional differential equation , 2011 .

[3]  Yong Li,et al.  Affine-periodic solutions for nonlinear differential equations , 2016 .

[4]  V. Uchaikin Fractional Derivatives for Physicists and Engineers , 2013 .

[5]  R. Gorenflo,et al.  Fractional Calculus: Integral and Differential Equations of Fractional Order , 2008, 0805.3823.

[6]  Tuckerman,et al.  Spiral-wave dynamics in a simple model of excitable media: The transition from simple to compound rotation. , 1990, Physical review. A, Atomic, molecular, and optical physics.

[7]  V. E. Tarasov Fractional Dynamics: Applications of Fractional Calculus to Dynamics of Particles, Fields and Media , 2011 .

[8]  Yong Li,et al.  Rotating periodic solutions of second order dissipative dynamical systems , 2015 .

[9]  I. Area,et al.  On quasi-periodicity properties of fractional integrals and fractional derivatives of periodic functions , 2015, 1507.05567.

[10]  AFFINE-PERIODIC SOLUTIONS FOR DISCRETE DYNAMICAL SYSTEMS , 2015 .

[11]  Cheng Cheng,et al.  Affine-Periodic Solutions and Pseudo Affine-Periodic Solutions for Differential Equations with Exponential Dichotomy and Exponential Trichotomy , 2016 .

[12]  Na Xu,et al.  Existence and properties of meromorphic solutions of some q-difference equations , 2015, Advances in Difference Equations.

[13]  Yeol Je Cho,et al.  Topological Degree Theory and Applications , 2006 .

[14]  Horst R. Beyer,et al.  Definition of physically consistent damping laws with fractional derivatives , 1995 .

[15]  Michael F. Shlesinger,et al.  FRACTAL TIME IN CONDENSED MATTER , 1988 .

[16]  B. G. Pachpatte A note on Gronwall-Bellman inequality , 1973 .

[17]  Harry L. Swinney,et al.  Periodic to quasiperiodic transition of chemical spiral rotation , 1991 .

[18]  M. Shlesinger,et al.  Random walks with infinite spatial and temporal moments , 1982 .

[19]  Yu Chen,et al.  Second-order duality for non-differentiable minimax fractional programming , 2012, Int. J. Comput. Math..

[20]  P. Levy Théorie de l'addition des variables aléatoires , 1955 .

[21]  Affine-periodic solutions for nonlinear dynamic equations on time scales , 2015 .

[22]  K. Miller,et al.  An Introduction to the Fractional Calculus and Fractional Differential Equations , 1993 .

[23]  Xue Yang,et al.  Affine-Periodic Solutions for Dissipative Systems , 2013 .

[24]  O. Agrawal,et al.  Advances in Fractional Calculus , 2007 .

[25]  E. Stein,et al.  Functional Analysis: Introduction to Further Topics in Analysis , 2011 .

[26]  Juan J. Nieto,et al.  COMPARISON RESULTS FOR PERIODIC BOUNDARY VALUE PROBLEM OF FRACTIONAL DIFFERENTIAL EQUATIONS , 2011 .

[27]  H. Srivastava,et al.  Theory and Applications of Fractional Differential Equations, Volume 204 (North-Holland Mathematics Studies) , 2006 .

[28]  Zhongli Wei,et al.  Periodic boundary value problems for fractional differential equations involving a Riemann–Liouville fractional derivative☆ , 2010 .

[29]  E. Montroll,et al.  Random Walks on Lattices. II , 1965 .

[30]  R. Bagley,et al.  On the Appearance of the Fractional Derivative in the Behavior of Real Materials , 1984 .

[31]  Bashir Ahmad,et al.  Existence of solutions for anti-periodic boundary value problems involving fractional differential equations via Leray-Schauder degree theory , 2010 .

[32]  Continuous time random walk model for standard map dynamics , 1997 .

[33]  Vasily E. Tarasov,et al.  Fractional Vector Calculus , 2010 .

[34]  J. Nieto,et al.  On Fractional Derivatives and Primitives of Periodic Functions , 2014, 1405.6010.

[35]  R. Bagley,et al.  Applications of Generalized Derivatives to Viscoelasticity. , 1979 .

[36]  Wenbin Liu,et al.  PERIODIC BOUNDARY VALUE PROBLEM FOR FRACTIONAL DIFFERENTIAL EQUATION , 2012 .

[37]  G. Zaslavsky,et al.  Lévy Flights and Related Topics in Physics , 2013 .

[38]  G. Weiss Aspects and Applications of the Random Walk , 1994 .

[39]  Anping Chen,et al.  Existence of Solutions to Anti-periodic Boundary Value Problem for Nonlinear Fractional Differential Equations , 2011 .

[40]  Iván Area,et al.  On quasi-periodic properties of fractional sums and fractional differences of periodic functions , 2016, Appl. Math. Comput..

[41]  Yong Li,et al.  Levinson’s Problem on Affine-Periodic Solutions , 2015 .

[42]  Hongren Wang,et al.  Rotating-symmetric solutions for nonlinear systems with symmetry , 2015 .