Studies on photocatalytic CO(2) reduction over NH2 -Uio-66(Zr) and its derivatives: towards a better understanding of photocatalysis on metal-organic frameworks.

Metal-organic framework (MOF) NH2 -Uio-66(Zr) exhibits photocatalytic activity for CO2 reduction in the presence of triethanolamine as sacrificial agent under visible-light irradiation. Photoinduced electron transfer from the excited 2-aminoterephthalate (ATA) to Zr oxo clusters in NH2 -Uio-66(Zr) was for the first time revealed by photoluminescence studies. Generation of Zr(III) and its involvement in photocatalytic CO2 reduction was confirmed by ESR analysis. Moreover, NH2 -Uio-66(Zr) with mixed ATA and 2,5-diaminoterephthalate (DTA) ligands was prepared and shown to exhibit higher performance for photocatalytic CO2 reduction due to its enhanced light adsorption and increased adsorption of CO2 . This study provides a better understanding of photocatalytic CO2 reduction over MOF-based photocatalysts and also demonstrates the great potential of using MOFs as highly stable, molecularly tunable, and recyclable photocatalysts in CO2 reduction.

[1]  T. Tachikawa,et al.  Photoinduced Charge-Transfer Processes on MOF-5 Nanoparticles: Elucidating Differences between Metal-Organic Frameworks and Semiconductor Metal Oxides , 2008 .

[2]  H. Tian,et al.  Near-IR core-substituted naphthalenediimide fluorescent chemosensors for zinc ions: ligand effects on PET and ICT channels. , 2010, Chemistry.

[3]  Hong-Cai Zhou,et al.  Metal-organic frameworks for separations. , 2012, Chemical reviews.

[4]  Joanna Rowsell,et al.  Strategien für die Wasserstoffspeicherung in metall‐organischen Kompositgerüsten , 2005 .

[5]  A. Torrisi,et al.  Functionalized MOFs for Enhanced CO2 Capture , 2010 .

[6]  Yong Zhou,et al.  A room-temperature reactive-template route to mesoporous ZnGa2O4 with improved photocatalytic activity in reduction of CO2. , 2010, Angewandte Chemie.

[7]  A. Corma,et al.  Engineering metal organic frameworks for heterogeneous catalysis. , 2010, Chemical reviews.

[8]  Jinhua Ye,et al.  The Effects of Crystal Structure and Electronic Structure on Photocatalytic H2 Evolution and CO2 Reduction over Two Phases of Perovskite-Structured NaNbO3 , 2012 .

[9]  M. Grätzel,et al.  Methanation and photo-methanation of carbon dioxide at room temperature and atmospheric pressure , 1987, Nature.

[10]  B. Ferrer,et al.  Semiconductor behavior of a metal-organic framework (MOF). , 2007, Chemistry.

[11]  Jian Zhang,et al.  Two-dimensional copper(I) coordination polymer materials as photocatalysts for the degradation of organic dyes. , 2013, Inorganic chemistry.

[12]  K. Uvdal,et al.  Nanoscale light-harvesting metal-organic frameworks. , 2011, Angewandte Chemie.

[13]  Omar M Yaghi,et al.  Strategies for hydrogen storage in metal--organic frameworks. , 2005, Angewandte Chemie.

[14]  Zhigang Xie,et al.  Doping metal-organic frameworks for water oxidation, carbon dioxide reduction, and organic photocatalysis. , 2011, Journal of the American Chemical Society.

[15]  Wenbin Lin,et al.  Enantioselective catalysis with homochiral metal-organic frameworks. , 2009, Chemical Society reviews.

[16]  Y. Himeda Conversion of CO2 into Formate by Homogeneously Catalyzed Hydrogenation in Water: Tuning Catalytic Activity and Water Solubility through the Acid–Base Equilibrium of the Ligand , 2007 .

[17]  Russell E. Morris,et al.  Bio-MOFs: Metall-organische Gerste fr biologische und medizinische Anwendungen , 2010 .

[18]  P. Ashokkumar,et al.  Photoinduced electron transfer (PET) based Zn2+ fluorescent probe: transformation of turn-on sensors into ratiometric ones with dual emission in acetonitrile. , 2011, The journal of physical chemistry. A.

[19]  Bartolomeo Civalleri,et al.  Ab-initio prediction of materials properties with CRYSTAL: MOF-5 as a case study , 2006 .

[20]  Hong-Cai Zhou,et al.  Selective gas adsorption and separation in metal-organic frameworks. , 2009, Chemical Society reviews.

[21]  R. Dragone,et al.  Intrinsic and Extrinsic Paramagnetic Centers in Zirconia , 2002 .

[22]  Wenbin Lin,et al.  Light harvesting in microscale metal-organic frameworks by energy migration and interfacial electron transfer quenching. , 2011, Journal of the American Chemical Society.

[23]  E. Giamello,et al.  Formation and reactivity of zirconium(3+) centers at the surface of vacuum-activated monoclinic zirconia , 1990 .

[24]  Omar K Farha,et al.  Metal-organic framework materials as catalysts. , 2009, Chemical Society reviews.

[25]  Yong Zhou,et al.  High-yield synthesis of ultralong and ultrathin Zn2GeO4 nanoribbons toward improved photocatalytic reduction of CO2 into renewable hydrocarbon fuel. , 2010, Journal of the American Chemical Society.

[26]  S. Kitagawa,et al.  Funktionale poröse Koordinationspolymere , 2004 .

[27]  Liang Feng,et al.  ESR Characterization of ZrO2 Nanopowder , 1995 .

[28]  Masakazu Saito,et al.  Visible-Light-Promoted Photocatalytic Hydrogen Production by Using an Amino-Functionalized Ti(IV) Metal–Organic Framework , 2012 .

[29]  Elsje Alessandra Quadrelli,et al.  Synthesis and Stability of Tagged UiO-66 Zr-MOFs , 2010 .

[30]  Seth M Cohen,et al.  Isoreticular synthesis and modification of frameworks with the UiO-66 topology. , 2010, Chemical communications.

[31]  M. Hill,et al.  A route to drastic increase of CO2 uptake in Zr metal organic framework UiO-66. , 2013, Chemical communications.

[32]  C. Serre,et al.  Why hybrid porous solids capture greenhouse gases? , 2011, Chemical Society reviews.

[33]  José A.C. Silva,et al.  A Microporous Metal−Organic Framework for Separation of CO2/N2 and CO2/CH4 by Fixed-Bed Adsorption , 2008 .

[34]  J. Hupp,et al.  Synthesis and characterization of isostructural cadmium zeolitic imidazolate frameworks via solvent-assisted linker exchange , 2012 .

[35]  A. Fujishima,et al.  Photoelectrocatalytic reduction of carbon dioxide in aqueous suspensions of semiconductor powders , 1979, Nature.

[36]  Zhigang Xie,et al.  Postsynthetic modifications of iron-carboxylate nanoscale metal-organic frameworks for imaging and drug delivery. , 2009, Journal of the American Chemical Society.

[37]  Omar M. Yaghi,et al.  Metal-organic frameworks: a new class of porous materials , 2004 .

[38]  K. Lillerud,et al.  Electronic and vibrational properties of a MOF-5 metal-organic framework: ZnO quantum dot behaviour. , 2004, Chemical communications.

[39]  M. Anpo,et al.  Local structures, excited states, and photocatalytic reactivities of highly dispersed catalysts constructed within zeolites , 2003 .

[40]  B. Sumpter,et al.  Electronic structure and properties of isoreticular metal-organic frameworks: the case of M-IRMOF1 (M = Zn, Cd, Be, Mg, and Ca). , 2005, The Journal of chemical physics.

[41]  Gérard Férey,et al.  BioMOFs: metal-organic frameworks for biological and medical applications. , 2010, Angewandte Chemie.

[42]  Y. Kawazoe,et al.  Highly controlled acetylene accommodation in a metal–organic microporous material , 2005, Nature.

[43]  Zhaohui Li,et al.  An amine-functionalized titanium metal-organic framework photocatalyst with visible-light-induced activity for CO2 reduction. , 2012, Angewandte Chemie.

[44]  D. Ng,et al.  A disulfide-linked conjugate of ferrocenyl chalcone and silicon(IV) phthalocyanine as an activatable photosensitiser. , 2013, Chemical communications.

[45]  Ulrich Müller,et al.  Industrial applications of metal-organic frameworks. , 2009, Chemical Society reviews.

[46]  Seth M. Cohen,et al.  Postsynthetic ligand and cation exchange in robust metal-organic frameworks. , 2012, Journal of the American Chemical Society.

[47]  H. García,et al.  Evidence of photoinduced charge separation in the metal-organic framework MIL-125(Ti)-NH2. , 2012, Chemphyschem : a European journal of chemical physics and physical chemistry.

[48]  Yangen Zhou,et al.  Amine-functionalized zirconium metal-organic framework as efficient visible-light photocatalyst for aerobic organic transformations. , 2012, Chemical communications.

[49]  M. Allendorf,et al.  Metal‐Organic Frameworks: A Rapidly Growing Class of Versatile Nanoporous Materials , 2011, Advanced materials.

[50]  Wenbin Lin,et al.  Amplified luminescence quenching of phosphorescent metal-organic frameworks. , 2012, Journal of the American Chemical Society.

[51]  Mircea Dincă,et al.  Hydrogen storage in metal-organic frameworks. , 2009, Chemical Society reviews.

[52]  Gérard Férey,et al.  Hybrid porous solids: past, present, future. , 2008, Chemical Society reviews.

[53]  Chun Liu,et al.  A ratiometric fluorescent sensor with a large Stokes shift for imaging zinc ions in living cells. , 2009, Chemical communications.

[54]  G. Seifert,et al.  Metal-organic frameworks: structural, energetic, electronic, and mechanical properties. , 2007, The journal of physical chemistry. B.

[55]  Avelino Corma,et al.  Water stable Zr-benzenedicarboxylate metal-organic frameworks as photocatalysts for hydrogen generation. , 2010, Chemistry.

[56]  A. Torrisi,et al.  Impact of ligands on CO(2) adsorption in metal-organic frameworks: First principles study of the interaction of CO(2) with functionalized benzenes. II. Effect of polar and acidic substituents. , 2010, The Journal of chemical physics.

[57]  Can Li,et al.  A hybrid photocatalytic system comprising ZnS as light harvester and an [Fe(2)S(2)] hydrogenase mimic as hydrogen evolution catalyst. , 2012, ChemSusChem.

[58]  Seth M. Cohen,et al.  Postsynthetic ligand exchange as a route to functionalization of ‘inert’ metal–organic frameworks , 2012 .

[59]  Wenguang Tu,et al.  Hexagonal Nanoplate-Textured Micro-Octahedron Zn2SnO4: Combined Effects toward Enhanced Efficiencies of Dye-Sensitized Solar Cell and Photoreduction of CO2 into Hydrocarbon Fuels , 2012 .

[60]  Christian J. Doonan,et al.  Multiple Functional Groups of Varying Ratios in Metal-Organic Frameworks , 2010, Science.

[61]  Susumu Kitagawa,et al.  Functional porous coordination polymers. , 2004, Angewandte Chemie.

[62]  H. Frei,et al.  Photochemical CO2 splitting by metal-to-metal charge-transfer excitation in mesoporous ZrCu(I)-MCM-41 silicate sieve. , 2005, Journal of the American Chemical Society.

[63]  Carlo Lamberti,et al.  A new zirconium inorganic building brick forming metal organic frameworks with exceptional stability. , 2008, Journal of the American Chemical Society.

[64]  Cheng Wang,et al.  Metal–Organic Frameworks for Light Harvesting and Photocatalysis , 2012 .