Local distinguishability of quantum states in infinite-dimensional systems

We investigate local distinguishability of quantum states by use of convex analysis of joint numerical range of operators on a Hilbert space. We show that any two orthogonal pure states are distinguishable by local operations and classical communications, even for infinite-dimensional systems. An estimate of the local discrimination probability is also given for some families of more than two pure states.

[1]  Fabio Anselmi,et al.  Local copying of orthogonal entangled quantum states , 2004 .

[2]  André L. Tits,et al.  On the generalized numerical range , 1987 .

[3]  G. Vidal Entanglement of pure states for a single copy , 1999, quant-ph/9902033.

[4]  A. Sen De,et al.  Distinguishability of Bell states. , 2001, Physical Review Letters.

[5]  J. Hiriart-Urruty,et al.  Fundamentals of Convex Analysis , 2004 .

[6]  Michael Nathanson Distinguishing bipartitite orthogonal states using LOCC: Best and worst cases , 2005 .

[7]  D. Markham,et al.  Optimal local discrimination of two multipartite pure states , 2001, quant-ph/0102073.

[8]  Vedral,et al.  Local distinguishability of multipartite orthogonal quantum states , 2000, Physical review letters.

[9]  E. Jonckheere,et al.  Convexity of the joint numerical range: topological and differential geometric viewpoints , 2004 .

[10]  H. Fan Distinguishability and indistinguishability by local operations and classical communication. , 2004, Physical review letters.

[11]  C. H. Bennett,et al.  Quantum nonlocality without entanglement , 1998, quant-ph/9804053.

[12]  Dirk Schlingemann,et al.  Infinitely entangled states , 2002, Quantum Inf. Comput..

[13]  P. Binding Hermitian forms and the fibration of spheres , 1985 .

[14]  M. Hayashi,et al.  Finding a maximally correlated state: Simultaneous Schmidt decomposition of bipartite pure states , 2004, quant-ph/0405107.

[15]  P. Halmos A Hilbert Space Problem Book , 1967 .

[16]  H. Lo,et al.  Concentrating entanglement by local actions: Beyond mean values , 1997, quant-ph/9707038.

[17]  M. Nielsen Conditions for a Class of Entanglement Transformations , 1998, quant-ph/9811053.