Phylogenetic Analysis of Proteins Associated in the Four Major Energy Metabolism Systems: Photosynthesis, Aerobic Respiration, Denitrification, and Sulfur Respiration

[1]  A. Bekker,et al.  Dating the rise of atmospheric oxygen , 2004, Nature.

[2]  So Iwata,et al.  Molecular Basis of Proton Motive Force Generation: Structure of Formate Dehydrogenase-N , 2002, Science.

[3]  Sudhir Kumar,et al.  MEGA2: molecular evolutionary genetics analysis software , 2001, Bioinform..

[4]  H. Schindelin,et al.  The 1.3 A Crystal Structure of Rhodobacter sphaeroides Dimethylsulfoxide Reductase Reveals Two Distinct Molybdenum Coordination Environments , 2000 .

[5]  J. Charnock,et al.  Dimethylsulfoxide reductase: an enzyme capable of catalysis with either molybdenum or tungsten at the active site. , 2000, Journal of molecular biology.

[6]  C. Moreno-Vivián,et al.  Prokaryotic Nitrate Reduction: Molecular Properties and Functional Distinction among Bacterial Nitrate Reductases , 1999, Journal of bacteriology.

[7]  S. Grinstein,et al.  Animal plasma membrane energization by proton‐motive V‐ATPases , 1999, BioEssays : news and reviews in molecular, cellular and developmental biology.

[8]  D. Richardson,et al.  Models for molybdenum coordination during the catalytic cycle of periplasmic nitrate reductase from Paracoccus denitrificans derived from EPR and EXAFS spectroscopy. , 1999, Biochemistry.

[9]  N. Saitou,et al.  Phylogenetic relationship of muscle tissues deduced from superimposition of gene trees. , 1999, Molecular biology and evolution.

[10]  J. Weiner,et al.  Interactions between the Molybdenum Cofactor and Iron-Sulfur Clusters of Escherichia coli Dimethylsulfoxide Reductase* , 1999, The Journal of Biological Chemistry.

[11]  R. Huber,et al.  Crystal structure of the first dissimilatory nitrate reductase at 1.9 A solved by MAD methods. , 1999, Structure.

[12]  D. Haussler,et al.  Sequence comparisons using multiple sequences detect three times as many remote homologues as pairwise methods. , 1998, Journal of molecular biology.

[13]  G. Giordano,et al.  Crystal structure of oxidized trimethylamine N-oxide reductase from Shewanella massilia at 2.5 A resolution. , 1998, Journal of molecular biology.

[14]  T. Sicheritz-Pontén,et al.  The genome sequence of Rickettsia prowazekii and the origin of mitochondria , 1998, Nature.

[15]  M. Finel Organization and evolution of structural elements within complex I. , 1998, Biochimica et biophysica acta.

[16]  T. Ohnishi,et al.  Iron-sulfur clusters/semiquinones in complex I. , 1998, Biochimica et biophysica acta.

[17]  G. Giordano,et al.  Molybdenum cofactor properties and [Fe-S] cluster coordination in Escherichia coli nitrate reductase A: investigation by site-directed mutagenesis of the conserved his-50 residue in the NarG subunit. , 1998, Biochemistry.

[18]  A. McEwan,et al.  The high resolution crystal structure of DMSO reductase in complex with DMSO. , 1998, Journal of molecular biology.

[19]  J. Thompson,et al.  The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. , 1997, Nucleic acids research.

[20]  E. Getzoff,et al.  Probing the catalytic mechanism of sulfite reductase by X-ray crystallography: structures of the Escherichia coli hemoprotein in complex with substrates, inhibitors, intermediates, and products. , 1997, Biochemistry.

[21]  Thomas L. Madden,et al.  Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. , 1997, Nucleic acids research.

[22]  V. Gladyshev,et al.  Crystal Structure of Formate Dehydrogenase H: Catalysis Involving Mo, Molybdopterin, Selenocysteine, and an Fe4S4 Cluster , 1997, Science.

[23]  E. Getzoff,et al.  The relationship between structure and function for the sulfite reductases. , 1996, Current opinion in structural biology.

[24]  J. Weiner,et al.  Consequences of Removal of a Molybdenum Ligand (DmsA-Ser-176) of Escherichia coli Dimethyl Sulfoxide Reductase* , 1996, The Journal of Biological Chemistry.

[25]  R. Huber,et al.  Crystal structure of dimethyl sulfoxide reductase from Rhodobacter capsulatus at 1.88 A resolution. , 1996, Journal of molecular biology.

[26]  D. Rees,et al.  Crystal Structure of DMSO Reductase: Redox-Linked Changes in Molybdopterin Coordination , 1996, Science.

[27]  J. Weiner,et al.  Engineering a Novel Iron-Sulfur Cluster into the Catalytic Subunit of Escherichia coli Dimethyl-sulfoxide Reductase (*) , 1996, The Journal of Biological Chemistry.

[28]  E. Getzoff,et al.  Sulfite Reductase Structure at 1.6 Å: Evolution and Catalysis for Reduction of Inorganic Anions , 1995, Science.

[29]  N. Brito,et al.  Cloning and disruption of the YNR1 gene encoding the nitrate reductase apoenzyme of the yeast Hansenula polymorpha , 1995, FEBS letters.

[30]  G. Schneider,et al.  Structural studies on corn nitrate reductase: refined structure of the cytochrome b reductase fragment at 2.5 A, its ADP complex and an active-site mutant and modeling of the cytochrome b domain. , 1995, Journal of molecular biology.

[31]  C. Pieterse,et al.  NiaA, the structural nitrate reductase gene of Phytophthora infestans: isolation, characterization and expression analysis in Aspergillus nidulans , 1995, Current Genetics.

[32]  G. Schneider,et al.  Crystal structure of the FAD-containing fragment of corn nitrate reductase at 2.5 A resolution: relationship to other flavoprotein reductases. , 1994, Structure.

[33]  D. Richardson,et al.  Characterization of the paramagnetic iron‐containing redox centres of Thiosphaera pantotropha periplasmic nitrate reductase , 1994, FEBS letters.

[34]  M. Saraste,et al.  Cytochrome oxidase evolved by tinkering with denitrification enzymes , 1994, FEBS letters.

[35]  H. Cuypers,et al.  Derived amino acid sequences of the nosZ gene (respiratory N2O reductase) from Alcaligenes eutrophus, Pseudomonas aeruginosa and Pseudomonas stutzeri reveal potential copper-binding residues. Implications for the CuA site of N2O reductase and cytochrome-c oxidase. , 1992, European journal of biochemistry.

[36]  E. Kojro,et al.  Cloning and nucleotide sequence of the psrA gene of Wolinella succinogenes polysulphide reductase. , 1992, European journal of biochemistry.

[37]  R. Contreras,et al.  The Aspergillus niger niaD gene encoding nitrate reductase: upstream nucleotide and amino acid sequence comparisons. , 1992, Gene.

[38]  J. Cowan,et al.  Enzymatic redox chemistry: a proposed reaction pathway for the six-electron reduction of SO3(2-) to S2- by the assimilatory-type sulfite reductase from Desulfovibrio vulgaris (Hildenborough). , 1991, Biochemistry.

[39]  R. W. Davis,et al.  Sequence and nitrate regulation of the Arabidopsis thaliana mRNA encoding nitrate reductase, a metalloflavoprotein with three functional domains. , 1988, Proceedings of the National Academy of Sciences of the United States of America.

[40]  G. Hauska,et al.  Amino acid identities in the three redox center-carrying polypeptides of cytochromebc1/b6f complexes , 1988, Journal of bioenergetics and biomembranes.

[41]  N. Saitou,et al.  The neighbor-joining method: a new method for reconstructing phylogenetic trees. , 1987, Molecular biology and evolution.

[42]  J. Vega A reduced pyridine nucleotides-diaphorase activity associated to the assimilatory nitrite reductase complex from Neurospora crassa , 1976, Archives of Microbiology.

[43]  Maria Jesus Martin,et al.  The SWISS-PROT protein knowledgebase and its supplement TrEMBL in 2003 , 2003, Nucleic Acids Res..

[44]  Susumu Goto,et al.  The KEGG databases at GenomeNet , 2002, Nucleic Acids Res..

[45]  A. Crofts,et al.  Structure and function of cytochrome bc complexes. , 2000, Annual review of biochemistry.

[46]  T. Lien,et al.  Dissimilatory sulfite reductase from Archaeoglobus profundus and Desulfotomaculum thermocisternum: phylogenetic and structural implications from gene sequences , 1999, Extremophiles.

[47]  T. Mogi Two terminal quinol oxidase families in Escherichia coli: Variations on molecular machinery for dioxygen reduction , 1998 .