Using Fuzzy Adaptive Genetic Algorithm for Function Optimization

The most challenging problem of traditional genetic algorithms is how to achieve optimal accuracy in acceptable time. The key to improvements are suitable mutation and crossover rates. In this paper, an improved genetic algorithm, called fuzzy adaptive genetic algorithm (FAGA), is proposed. The enhanced algorithm dynamically adjusts its mutation and crossover rates according to a fuzzy inference model and the performances of individuals and populations. The proposed algorithm incorporates an elitism strategy to conserve good solutions. In addition, new individuals are introduced to guarantee population diversity and to extend the search space of the problem. The proposed algorithm is applied to several function optimization problems. The simulation results show that the average performance of the proposed algorithm overall is better than the best results obtained using a traditional elitist-based genetic algorithm

[1]  Edmund K. Burke,et al.  Initialization Strategies and Diversity in Evolutionary Timetabling , 1998, Evolutionary Computation.

[2]  Lawrence. Davis,et al.  Handbook Of Genetic Algorithms , 1990 .

[3]  Lothar Thiele,et al.  A Comparison of Selection Schemes Used in Evolutionary Algorithms , 1996, Evolutionary Computation.

[4]  Cheng-Fa Tsai,et al.  A Multiple-Searching Approach to Genetic Algorithms for Solving Traveling Salesman Problem , 2002, JCIS.

[5]  Jaap Kamps,et al.  Structure for information retrieval , 2002 .

[6]  Yo-Ping Huang,et al.  Real-valued genetic algorithms for fuzzy grey prediction system , 1997, Fuzzy Sets Syst..

[7]  Annie S. Wu,et al.  A Comparison of the Fixed and Floating Building Block Representation in the Genetic Algorithm , 1996, Evolutionary Computation.

[8]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[9]  P. Siarry,et al.  A genetic algorithm with real-value coding to optimize multimodal continuous functions , 2001 .

[10]  S. Baskar,et al.  Genetic algorithms solution to generator maintenance scheduling with modified genetic operators , 2003 .

[11]  Gilbert Syswerda,et al.  Uniform Crossover in Genetic Algorithms , 1989, ICGA.

[12]  Weicai Zhong,et al.  A multiagent genetic algorithm for global numerical optimization , 2004, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[13]  K. Deb Solving goal programming problems using multi-objective genetic algorithms , 1999, Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406).

[14]  Nostrand Reinhold,et al.  the utility of using the genetic algorithm approach on the problem of Davis, L. (1991), Handbook of Genetic Algorithms. Van Nostrand Reinhold, New York. , 1991 .

[15]  Jamshid Ghaboussi,et al.  Implicit Representation in Genetic Algorithms Using Redundancy , 1997, Evolutionary Computation.

[16]  Annie S. Wu,et al.  Introduction to the Special Issue: Variable-Length Representation and Noncoding Segments for Evolutionary Algorithms , 1998, Evolutionary Computation.

[17]  Peter Ross,et al.  Adapting Operator Settings in Genetic Algorithms , 1998, Evolutionary Computation.

[18]  C. Singh,et al.  Adequacy Assessment of Power System Generation Using a Modified Simple Genetic Algorithm , 2002, IEEE Power Engineering Review.

[19]  A. Eiben,et al.  A multi-sexual genetic algorithm for multiobjective optimization , 1997, Proceedings of 1997 IEEE International Conference on Evolutionary Computation (ICEC '97).

[20]  Byoung-Tak Zhang,et al.  Evolutionary learning of Web-document structure for information retrieval , 2001, Proceedings of the 2001 Congress on Evolutionary Computation (IEEE Cat. No.01TH8546).

[21]  Kalyanmoy Deb,et al.  Analysis of Selection Algorithms: A Markov Chain Approach , 1996, Evolutionary Computation.

[22]  Kotaro Hirasawa,et al.  Genetic symbiosis algorithm for multiobjective optimization problem , 2000, Proceedings 9th IEEE International Workshop on Robot and Human Interactive Communication. IEEE RO-MAN 2000 (Cat. No.00TH8499).

[23]  Shapour Azarm,et al.  Constraint handling improvements for multiobjective genetic algorithms , 2002 .

[24]  Manuel Valenzuela-Rendón,et al.  A Non-Generational Genetic Algorithm for Multiobjective Optimization , 1997, ICGA.

[25]  Richard K. Belew,et al.  New Methods for Competitive Coevolution , 1997, Evolutionary Computation.

[26]  Sanza T. Kazadi,et al.  Conjugate Schema and Basis Representation of Crossover and Mutation Operators , 1998, Evolutionary Computation.