A Weakly Pareto Compliant Quality Indicator

In multi‐ and many‐objective optimization problems, the optimization target is to obtain a set of non‐dominated solutions close to the Pareto‐optimal front, well‐distributed, maximally extended and fully filled. Comparing solution sets is crucial in evaluating the performance of different optimization algorithms. The use of performance indicators is common in comparing those sets and, subsequently, optimization algorithms. Therefore, an effective performance indicator must encompass these features as a whole and, above all, it must be Pareto dominance compliant. Unfortunately, some of the known indicators often fail to properly reflect the quality of a solution set or cost a lot to compute. This paper demonstrates that the Degree of Approximation (DOA) quality indicator is a weakly Pareto compliant unary indicator that gives a good estimation of the match between the approximated front and the Pareto‐optimal front.

[1]  J. D. Schaffer,et al.  Multiple Objective Optimization with Vector Evaluated Genetic Algorithms , 1985, ICGA.

[2]  Frank Kursawe,et al.  A Variant of Evolution Strategies for Vector Optimization , 1990, PPSN.

[3]  Kalyanmoy Deb,et al.  Muiltiobjective Optimization Using Nondominated Sorting in Genetic Algorithms , 1994, Evolutionary Computation.

[4]  C. Poloni Hybrid GA for Multi Objective Aerodynamic Shape Optimisation , 1995 .

[5]  Jason R. Schott Fault Tolerant Design Using Single and Multicriteria Genetic Algorithm Optimization. , 1995 .

[6]  Peter J. Fleming,et al.  An Overview of Evolutionary Algorithms in Multiobjective Optimization , 1995, Evolutionary Computation.

[7]  Hans-Paul Schwefel,et al.  Parallel Problem Solving from Nature — PPSN IV , 1996, Lecture Notes in Computer Science.

[8]  Peter J. Fleming,et al.  On the Performance Assessment and Comparison of Stochastic Multiobjective Optimizers , 1996, PPSN.

[9]  Piotr Czyzżak,et al.  Pareto simulated annealing—a metaheuristic technique for multiple‐objective combinatorial optimization , 1998 .

[10]  Lothar Thiele,et al.  Multiobjective Optimization Using Evolutionary Algorithms - A Comparative Case Study , 1998, PPSN.

[11]  Gary B. Lamont,et al.  Multiobjective evolutionary algorithms: classifications, analyses, and new innovations , 1999 .

[12]  Lothar Thiele,et al.  Comparison of Multiobjective Evolutionary Algorithms: Empirical Results , 2000, Evolutionary Computation.

[13]  D.A. Van Veldhuizen,et al.  On measuring multiobjective evolutionary algorithm performance , 2000, Proceedings of the 2000 Congress on Evolutionary Computation. CEC00 (Cat. No.00TH8512).

[14]  Shapour Azarm,et al.  Metrics for Quality Assessment of a Multiobjective Design Optimization Solution Set , 2001 .

[15]  Tong Heng Lee,et al.  Evolutionary Algorithms for Multi-Objective Optimization: Performance Assessments and Comparisons , 2001, Proceedings of the 2001 Congress on Evolutionary Computation (IEEE Cat. No.01TH8546).

[16]  Kalyanmoy Deb,et al.  A fast and elitist multiobjective genetic algorithm: NSGA-II , 2002, IEEE Trans. Evol. Comput..

[17]  G. K. Kamenev,et al.  Approximation and visualization of the Pareto frontier for nonconvex multicriteria problems , 2002 .

[18]  Marco Laumanns,et al.  Scalable multi-objective optimization test problems , 2002, Proceedings of the 2002 Congress on Evolutionary Computation. CEC'02 (Cat. No.02TH8600).

[19]  Joshua D. Knowles,et al.  Bounded archiving using the lebesgue measure , 2003, The 2003 Congress on Evolutionary Computation, 2003. CEC '03..

[20]  Marco Laumanns,et al.  Performance assessment of multiobjective optimizers: an analysis and review , 2003, IEEE Trans. Evol. Comput..

[21]  Satchidananda Dehuri,et al.  Evolutionary Algorithms for Multi-Criterion Optimization: A Survey , 2004 .

[22]  Carlos A. Coello Coello,et al.  A Study of the Parallelization of a Coevolutionary Multi-objective Evolutionary Algorithm , 2004, MICAI.

[23]  Alexander V. Lotov,et al.  Interactive Decision Maps: Approximation and Visualization of Pareto Frontier , 2004 .

[24]  R. Lyndon While,et al.  A New Analysis of the LebMeasure Algorithm for Calculating Hypervolume , 2005, EMO.

[25]  Lothar Thiele,et al.  A Tutorial on the Performance Assessment of Stochastic Multiobjective Optimizers , 2006 .

[26]  Carlos M. Fonseca,et al.  An Improved Dimension-Sweep Algorithm for the Hypervolume Indicator , 2006, 2006 IEEE International Conference on Evolutionary Computation.

[27]  R. Lyndon While,et al.  A faster algorithm for calculating hypervolume , 2006, IEEE Transactions on Evolutionary Computation.

[28]  Nicola Beume,et al.  SMS-EMOA: Multiobjective selection based on dominated hypervolume , 2007, Eur. J. Oper. Res..

[29]  Kalyanmoy Deb,et al.  On finding multiple Pareto-optimal solutions using classical and evolutionary generating methods , 2007, Eur. J. Oper. Res..

[30]  Lothar Thiele,et al.  Quality Assessment of Pareto Set Approximations , 2008, Multiobjective Optimization.

[31]  Salvador Botello Rionda,et al.  Why Unary Quality Indicators Are Not Inferior to Binary Quality Indicators , 2009, MICAI.

[32]  Nicola Beume,et al.  S-Metric Calculation by Considering Dominated Hypervolume as Klee's Measure Problem , 2009, Evolutionary Computation.

[33]  R. K. Ursem Multi-objective Optimization using Evolutionary Algorithms , 2009 .

[34]  Marco Laumanns,et al.  Stochastic convergence of random search methods to fixed size Pareto front approximations , 2011, Eur. J. Oper. Res..

[35]  Weicheng Xie,et al.  Convergence of multi-objective evolutionary algorithms to a uniformly distributed representation of the Pareto front , 2011, Inf. Sci..

[36]  Carlos A. Coello Coello,et al.  Using the Averaged Hausdorff Distance as a Performance Measure in Evolutionary Multiobjective Optimization , 2012, IEEE Transactions on Evolutionary Computation.

[37]  Enrique Alba,et al.  Multi-objective optimization using metaheuristics: non-standard algorithms , 2012, Int. Trans. Oper. Res..

[38]  Christian Blume,et al.  Pareto Optimization or Cascaded Weighted Sum: A Comparison of Concepts , 2014, Algorithms.

[39]  Santi Agatino Rizzo,et al.  A Parallel Version of the Self-Adaptive Low-High Evaluation Evolutionary-Algorithm for Electromagnetic Device Optimization , 2014, IEEE Transactions on Magnetics.

[40]  Kalyanmoy Deb,et al.  An interactive evolutionary multi-objective optimization algorithm with a limited number of decision maker calls , 2014, Eur. J. Oper. Res..

[41]  Wei Li,et al.  Resource allocation model and double-sphere crowding distance for evolutionary multi-objective optimization , 2014, Eur. J. Oper. Res..

[42]  Wenhua Zeng,et al.  A New Local Search-Based Multiobjective Optimization Algorithm , 2015, IEEE Transactions on Evolutionary Computation.

[43]  Peter J. Fleming,et al.  Preference-inspired co-evolutionary algorithms using weight vectors , 2015, Eur. J. Oper. Res..

[44]  Heike Trautmann,et al.  Optimal averaged Hausdorff archives for bi-objective problems: theoretical and numerical results , 2016, Comput. Optim. Appl..

[45]  Oliver Schütze,et al.  A scalar optimization approach for averaged Hausdorff approximations of the Pareto front , 2016 .

[46]  E. Cowan Heuristics for Optimising the Calculation of Hypervolume for Multi-objective Optimisation Problems , 2019 .