Design Strategies for Ultra-Low Voltage Circuits

Energy efficiency is an emerging metric for the quality of integrated circuit designs. Applications ranging from wireless sensor networks to RFID tags to embedded microprocessors require extremely low power consumption to maintain good battery life. We advocate the use of aggressively scaled supply voltages in such applications to maximize energy efficiency. This paper reviews our recent progress in mapping out the low energy design space including the presence of an energyoptimal supply voltage, and also touches on gate sizing techniques and variability issues. We conclude with a survey of open research directions in the ultra-low voltage design space.

[1]  Jeffrey A. Davis,et al.  The fundamental limit on binary switching energy for terascale integration (TSI) , 2000, IEEE Journal of Solid-State Circuits.

[2]  Larry L. Howell,et al.  Microbatteries for self-sustained hybrid micropower supplies , 2002 .

[3]  Dale Teeters,et al.  Vanadia xerogel nanocathodes used in lithium microbatteries , 2003 .

[4]  Single-ISA Heterogeneous Multi-Core Architectures: The Potential for Processor Power Reduction , 2003, MICRO.

[5]  R. Ho,et al.  Proximity communication , 2004, IEEE Journal of Solid-State Circuits.

[6]  A. Chandrakasan,et al.  A 180mV FFT processor using subthreshold circuit techniques , 2004, 2004 IEEE International Solid-State Circuits Conference (IEEE Cat. No.04CH37519).

[7]  David Blaauw,et al.  Theoretical and practical limits of dynamic voltage scaling , 2004, Proceedings. 41st Design Automation Conference, 2004..

[8]  David E. Culler,et al.  Lessons from a Sensor Network Expedition , 2004, EWSN.

[9]  Kaushik Roy,et al.  Computing with subthreshold leakage: device/circuit/architecture co-design for ultralow-power subthreshold operation , 2005, IEEE Transactions on Very Large Scale Integration (VLSI) Systems.

[10]  Joseph A. Paradiso,et al.  Energy scavenging for mobile and wireless electronics , 2005, IEEE Pervasive Computing.

[11]  T. Sakurai,et al.  Analysis and design of inductive coupling and transceiver circuit for inductive inter-chip wireless superconnect , 2005, IEEE Journal of Solid-State Circuits.

[12]  David Blaauw,et al.  Analysis and mitigation of variability in subthreshold design , 2005, ISLPED '05. Proceedings of the 2005 International Symposium on Low Power Electronics and Design, 2005..

[13]  Sachin S. Sapatnekar,et al.  Subthreshold logical effort: a systematic framework for optimal subthreshold device sizing , 2006, 2006 43rd ACM/IEEE Design Automation Conference.

[14]  Bo Zhai,et al.  A 2.60pJ/Inst Subthreshold Sensor Processor for Optimal Energy Efficiency , 2006, 2006 Symposium on VLSI Circuits, 2006. Digest of Technical Papers..

[15]  Sachin S. Sapatnekar,et al.  Mathematically assisted adaptive body bias (ABB) for temperature compensation in gigascale LSI systems , 2006, Asia and South Pacific Conference on Design Automation, 2006..

[16]  David Blaauw,et al.  A New Technique for Jointly Optimizing Gate Sizing and Supply Voltage in Ultra-Low Energy Circuits , 2006, ISLPED'06 Proceedings of the 2006 International Symposium on Low Power Electronics and Design.

[17]  M.P. Flynn,et al.  A Fully Integrated Auto-Calibrated SuperRegenerative Receiver , 2006, 2006 IEEE International Solid State Circuits Conference - Digest of Technical Papers.

[18]  David Blaauw,et al.  Ultralow-voltage, minimum-energy CMOS , 2006, IBM J. Res. Dev..

[19]  A. Chandrakasan,et al.  A 256kb Sub-threshold SRAM in 65nm CMOS , 2006, 2006 IEEE International Solid State Circuits Conference - Digest of Technical Papers.

[20]  David Blaauw,et al.  Low Power Electronics and Design , .