Parametric eigenstructure assignment in second-order descriptor linear systems
暂无分享,去创建一个
[1] Guang-Ren Duan,et al. Eigenstructure assignment and response analysis in descriptor linear systems with state feedback control , 1998 .
[2] Mark J. Balas,et al. Trends in large space structure control theory: Fondest hopes, wildest dreams , 1982 .
[3] Guang-Ren Duan,et al. On the solution to the Sylvester matrix equation AV+BW=EVF , 1996, IEEE Trans. Autom. Control..
[4] Duan Guang-ren. Complete parametric approach for eigenstructure assignment in a class of second-order linear systems , 2001 .
[5] A. Kress,et al. Eigenstructure assignment using inverse eigenvalue methods , 1995 .
[6] G. R. DUAN,et al. Solution to matrix equation AV + BW = EVF and eigenstructure assignment for descriptor systems , 1992, Autom..
[7] B. Datta,et al. Feedback stabilization of a second-order system: A nonmodal approach , 1993 .
[8] Biswa Nath Datta,et al. Numerically robust pole assignment for second-order systems , 1996 .
[9] Biswa Nath Datta,et al. PARTIAL EIGENSTRUCTURE ASSIGNMENT FOR THE QUADRATIC PENCIL , 2000 .
[10] Stanoje Bingulac,et al. On coprime factorization and minimal realization of transfer function matrices using the pseudo-observability concept , 1994 .
[11] Biswa Nath Datta,et al. Robust and minimum norm partial pole assignment in vibrating structures with aerodynamics effects , 2003, 42nd IEEE International Conference on Decision and Control (IEEE Cat. No.03CH37475).
[12] John L. Junkins,et al. Robust eigensystem assignment for flexible structures , 1987 .
[13] T. Beelen,et al. Numerical computation of a coprime factorization of a transfer function matrix , 1987 .
[14] Amit Bhaya,et al. On the design of large flexible space structures(LFSS) , 1985, 1985 24th IEEE Conference on Decision and Control.
[15] G. Duan. Solutions of the equation AV+BW=VF and their application to eigenstructure assignment in linear systems , 1993, IEEE Trans. Autom. Control..
[16] Youdan Kim,et al. Eigenstructure Assignment Algorithm for Mechanical Second-Order Systems , 1999 .
[17] B. Datta,et al. ORTHOGONALITY AND PARTIAL POLE ASSIGNMENT FOR THE SYMMETRIC DEFINITE QUADRATIC PENCIL , 1997 .
[18] Alan J. Laub,et al. Controllability and observability criteria for multivariable linear second-order models , 1984 .
[19] Jaroslav Kautsky,et al. Robust Eigenstructure Assignment in Quadratic Matrix Polynomials: Nonsingular Case , 2001, SIAM J. Matrix Anal. Appl..