Parametric eigenstructure assignment in second-order descriptor linear systems

This note considers eigenstructure assignment in second-order descriptor linear systems via proportional plus derivative feedback. It is shown that the problem is closely related with a type of so-called second-order Sylvester matrix equations. Through establishing two general parametric solutions to this type of matrix equations, two complete parametric methods for the proposed eigenstructure assignment problem are presented. Both methods give simple complete parametric expressions for the feedback gains and the closed-loop eigenvector matrices. The first one mainly depends on a series of singular value decompositions, and is thus numerically simple and reliable. The second one utilizes the right factorization of the system, and allows the closed-loop eigenvalues to be set undetermined and sought via certain optimization procedures. An example shows the effect of the proposed approaches.

[1]  Guang-Ren Duan,et al.  Eigenstructure assignment and response analysis in descriptor linear systems with state feedback control , 1998 .

[2]  Mark J. Balas,et al.  Trends in large space structure control theory: Fondest hopes, wildest dreams , 1982 .

[3]  Guang-Ren Duan,et al.  On the solution to the Sylvester matrix equation AV+BW=EVF , 1996, IEEE Trans. Autom. Control..

[4]  Duan Guang-ren Complete parametric approach for eigenstructure assignment in a class of second-order linear systems , 2001 .

[5]  A. Kress,et al.  Eigenstructure assignment using inverse eigenvalue methods , 1995 .

[6]  G. R. DUAN,et al.  Solution to matrix equation AV + BW = EVF and eigenstructure assignment for descriptor systems , 1992, Autom..

[7]  B. Datta,et al.  Feedback stabilization of a second-order system: A nonmodal approach , 1993 .

[8]  Biswa Nath Datta,et al.  Numerically robust pole assignment for second-order systems , 1996 .

[9]  Biswa Nath Datta,et al.  PARTIAL EIGENSTRUCTURE ASSIGNMENT FOR THE QUADRATIC PENCIL , 2000 .

[10]  Stanoje Bingulac,et al.  On coprime factorization and minimal realization of transfer function matrices using the pseudo-observability concept , 1994 .

[11]  Biswa Nath Datta,et al.  Robust and minimum norm partial pole assignment in vibrating structures with aerodynamics effects , 2003, 42nd IEEE International Conference on Decision and Control (IEEE Cat. No.03CH37475).

[12]  John L. Junkins,et al.  Robust eigensystem assignment for flexible structures , 1987 .

[13]  T. Beelen,et al.  Numerical computation of a coprime factorization of a transfer function matrix , 1987 .

[14]  Amit Bhaya,et al.  On the design of large flexible space structures(LFSS) , 1985, 1985 24th IEEE Conference on Decision and Control.

[15]  G. Duan Solutions of the equation AV+BW=VF and their application to eigenstructure assignment in linear systems , 1993, IEEE Trans. Autom. Control..

[16]  Youdan Kim,et al.  Eigenstructure Assignment Algorithm for Mechanical Second-Order Systems , 1999 .

[17]  B. Datta,et al.  ORTHOGONALITY AND PARTIAL POLE ASSIGNMENT FOR THE SYMMETRIC DEFINITE QUADRATIC PENCIL , 1997 .

[18]  Alan J. Laub,et al.  Controllability and observability criteria for multivariable linear second-order models , 1984 .

[19]  Jaroslav Kautsky,et al.  Robust Eigenstructure Assignment in Quadratic Matrix Polynomials: Nonsingular Case , 2001, SIAM J. Matrix Anal. Appl..