Quasiparticles and phonon satellites in spectral functions of semiconductors and insulators: Cumulants applied to full first principles theory and Fr\"ohlich polaron

The electron-phonon interaction causes thermal and zero-point motion shifts of electron quasiparticle (QP) energies $\epsilon_k(T)$. Other consequences of interactions, visible in angle-resolved photoemission spectroscopy (ARPES) experiments, are broadening of QP peaks and appearance of sidebands, contained in the electron spectral function $A(k,\omega)=-{\Im m}G_R(k,\omega) /\pi$, where $G_R$ is the retarded Green's function. Electronic structure codes (e.g. using density-functional theory) are now available that compute the shifts and start to address broadening and sidebands. Here we consider MgO and LiF, and determine their nonadiabatic Migdal self energy. The spectral function obtained from the Dyson equation makes errors in the weight and energy of the QP peak and the position and weight of the phonon-induced sidebands. Only one phonon satellite appears, with an unphysically large energy difference (larger than the highest phonon energy) with respect to the QP peak. By contrast, the spectral function from a cumulant treatment of the same self energy is physically better, giving a quite accurate QP energy and several satellites approximately spaced by the LO phonon energy. In particular, the positions of the QP peak and first satellite agree closely with those found for the Fr\"ohlich Hamiltonian by Mishchenko $\textit{et al.}$ (2000) using diagrammatic Monte Carlo. We provide a detailed comparison between the first-principles MgO and LiF results and those of the Fr\"ohlich Hamiltonian. Such an analysis applies widely to materials with infra-red active phonons. We also compare the retarded and time-ordered cumulant treatments: they are equivalent for the Fr\"ohlich Hamiltonian, and only slightly differ in first-principles electron-phonon results for wide-band gap materials.

[1]  M. Calandra,et al.  Wannier interpolation of the electron-phonon matrix elements in polar semiconductors: Polar-optical coupling in GaAs , 2015, 1508.06172.

[2]  Manuel Cardona,et al.  Theory of the temperature dependence of the direct gap of germanium , 1981 .

[3]  Edgar A. Engel,et al.  Giant electron-phonon interactions in molecular crystals and the importance of non-quadratic coupling , 2015, 1510.07904.

[4]  L. Hedin Properties of electron self-energies and their role in electron spectroscopies , 1991 .

[5]  S. Poncé,et al.  Temperature Dependence of the Energy Levels of Methylammonium Lead Iodide Perovskite from First-Principles. , 2016, The journal of physical chemistry letters.

[6]  T. Balasubramanian,et al.  Nonquasiparticle structure in the photoemission spectra from the Be(0001) surface and determination of the electron self energy , 2000 .

[7]  Timothy C. Berkelbach,et al.  Spectral functions of the uniform electron gas via coupled-cluster theory and comparison to the GW and related approximations , 2015, 1512.04556.

[8]  Andrea Marini,et al.  Ab initio finite-temperature excitons. , 2007, Physical review letters.

[9]  A. Marini,et al.  Anomalous Temperature Dependence of the Band Gap in Black Phosphorus. , 2016, Nano letters.

[10]  M. Fornari,et al.  Theory of band warping and its effects on thermoelectronic transport properties , 2014, 1402.6979.

[11]  A. Marini,et al.  Effect of the quantum zero-point atomic motion on the optical and electronic properties of diamond and trans-polyacetylene. , 2011, Physical review letters.

[12]  H. Fröhlich Electrons in lattice fields , 1954 .

[13]  F. Giustino,et al.  Origin of the crossover from polarons to Fermi liquids in transition metal oxides , 2017, Nature Communications.

[14]  Comparing electron-phonon coupling strength in diamond, silicon, and silicon carbide: First-principles study , 2014, 1406.0654.

[15]  A. Filippetti,et al.  Polaronic metal state at the LaAlO3/SrTiO3 interface , 2015, Nature Communications.

[16]  D. Hamann Optimized norm-conserving Vanderbilt pseudopotentials , 2013, 1306.4707.

[17]  A. Marini,et al.  Zero point motion effect on the electronic properties of diamond, trans-polyacetylene and polyethylene , 2012 .

[18]  Marvin L. Cohen,et al.  Band Structures and Pseudopotential Form Factors for Fourteen Semiconductors of the Diamond and Zinc-blende Structures , 1966 .

[19]  L. Wirtz,et al.  Temperature-dependent excitonic effects in the optical properties of single-layer MoS 2 , 2016, 1604.00943.

[20]  D. Dunn Electron–Phonon Interactions in an Insulator , 1975 .

[21]  L. Hedin Effects of Recoil on Shake-Up Spectra in Metals , 1980 .

[22]  Akihiko Sakamoto,et al.  Diagrammatic quantum Monte Carlo study of the Fröhlich polaron , 2000 .

[23]  Yannick Gillet,et al.  Precise effective masses from density functional perturbation theory , 2016 .

[24]  Jensen,et al.  Phonon contribution to quasiparticle lifetimes in Cu measured by angle-resolved photoemission. , 1995, Physical review. B, Condensed matter.

[25]  N. V. Smith,et al.  Photoemission Properties of Simple Metals , 1970 .

[26]  Gunnarsson,et al.  Corrections to Migdal's theorem for spectral functions: A cumulant treatment of the time-dependent Green's function. , 1994, Physical review. B, Condensed matter.

[27]  L. Reining,et al.  Dynamical effects in electron spectroscopy. , 2015, The Journal of chemical physics.

[28]  F. Aryasetiawan,et al.  Self-consistent cumulant expansion for the electron gas , 1997 .

[29]  Role of bulk and surface phonons in the decay of metal surface States. , 2001, Physical review letters.

[30]  David Vanderbilt,et al.  Temperature Effects in the Band Structure of Topological Insulators. , 2016, Physical review letters.

[31]  Lucia Reining,et al.  Cumulant expansion of the retarded one-electron Green function , 2014 .

[32]  MANY-BODY EFFECTS IN ANGLE-RESOLVED PHOTOEMISSION : QUASIPARTICLE ENERGY AND LIFETIME OF A MO(110) SURFACE STATE , 1999, cond-mat/9904449.

[33]  Richard M. Martin Electronic Structure: Frontmatter , 2004 .

[34]  S. Poncé,et al.  Many-Body Effects on the Zero-Point Renormalization of the Band Structure , 2014 .

[35]  A. Bostwick,et al.  Tunable polaronic conduction in anatase TiO2. , 2013, Physical review letters.

[36]  A. Marini,et al.  A many-body perturbation theory approach to the electron-phonon interaction with density-functional theory as a starting point , 2015, 1503.00567.

[37]  Xavier Gonze,et al.  Dynamical and anharmonic effects on the electron-phonon coupling and the zero-point renormalization of the electronic structure , 2015, 1505.07738.

[38]  Optical conductivity of the Fröhlich polaron. , 2003, Physical review letters.

[39]  Chris J Pickard,et al.  Electron-phonon coupling and the metallization of solid helium at terapascal pressures. , 2013, Physical review letters.

[40]  F. Giustino,et al.  Band structures of plasmonic polarons. , 2015, Physical review letters.

[41]  J. Devreese,et al.  Fröhlich polaron and bipolaron: recent developments , 2009, 0904.3682.

[42]  F. Giustino,et al.  The GW plus cumulant method and plasmonic polarons: application to the homogeneous electron gas* , 2016, 1606.08573.

[43]  X. Gonze,et al.  Verification of first-principles codes: Comparison of total energies, phonon frequencies, electron–phonon coupling and zero-point motion correction to the gap between ABINIT and QE/Yambo , 2013, 1309.0729.

[44]  Lars Hedin,et al.  REVIEW ARTICLE: On correlation effects in electron spectroscopies and the GW approximation , 1999 .

[45]  S. Louie,et al.  Physical origin of satellites in photoemission of doped graphene: an ab initio GW plus cumulant study. , 2013, Physical review letters.

[46]  Z. K. Liu,et al.  Interfacial mode coupling as the origin of the enhancement of Tc in FeSe films on SrTiO3 , 2013, Nature.

[47]  S. Poncé,et al.  Temperature dependence of the electronic structure of semiconductors and insulators. , 2015, The Journal of chemical physics.

[48]  S. Louie,et al.  Dispersion and line shape of plasmon satellites in one, two, and three dimensions , 2016, 1606.06619.

[49]  G. Mahan Phonon-Broadened Optical Spectra: Urbach's Rule , 1966 .

[50]  H. Y. Fan Temperature Dependence of the Energy Gap in Monatomic Semiconductors , 1950 .

[51]  Karlsson,et al.  Multiple Plasmon Satellites in Na and Al Spectral Functions from Ab Initio Cumulant Expansion. , 1996, Physical review letters.

[52]  Walter R. L. Lambrecht,et al.  Lattice polarization effects on the screened Coulomb interaction $W$ of the GW approximation , 2017, 1706.10252.

[53]  Stefan Goedecker,et al.  ABINIT: First-principles approach to material and nanosystem properties , 2009, Comput. Phys. Commun..

[54]  R. Kubo GENERALIZED CUMULANT EXPANSION METHOD , 1962 .

[55]  D. Langreth Singularities in the X-Ray Spectra of Metals , 1970 .

[56]  Xavier Gonze,et al.  Dynamical matrices, born effective charges, dielectric permittivity tensors, and interatomic force constants from density-functional perturbation theory , 1997 .

[57]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[58]  M. Garnier,et al.  Photoemission Study of a Strongly Coupled Electron-Phonon System , 1999 .

[59]  M. Silly,et al.  Multiple satellites in materials with complex plasmon spectra: From graphite to graphene , 2014 .

[60]  Fang Liu,et al.  Recent developments in the ABINIT software package , 2016, Comput. Phys. Commun..

[61]  C. N. Berglund,et al.  Photoemission Studies of Copper and Silver: Experiment , 1964 .

[62]  Bartomeu Monserrat,et al.  Anharmonic vibrational properties in periodic systems: energy, electron-phonon coupling, and stress , 2013, 1303.0745.

[63]  M. J. van Setten,et al.  The PseudoDojo: Training and grading a 85 element optimized norm-conserving pseudopotential table , 2017, Comput. Phys. Commun..

[64]  J. Rehr,et al.  Cumulant expansion for phonon contributions to the electron spectral function , 2014, 1407.6408.

[65]  F. Aryasetiawan,et al.  Spectral Properties of Quasiparticles in Silicon: A test of Many-body Theory , 2003 .

[66]  P. B. Allen,et al.  Influence of Fröhlich polaron coupling on renormalized electron bands in polar semiconductors: Results for zinc-blende GaN , 2016, 1603.04269.

[67]  Lucia Reining,et al.  Valence electron photoemission spectrum of semiconductors: ab initio description of multiple satellites. , 2011, Physical review letters.

[68]  Xavier Gonze,et al.  Theoretical approaches to the temperature and zero‐point motion effects on the electronic band structure , 2011 .

[69]  K. Burke,et al.  Generalized Gradient Approximation Made Simple [Phys. Rev. Lett. 77, 3865 (1996)] , 1997 .

[70]  S. Louie,et al.  Electron-phonon renormalization of the direct band gap of diamond. , 2010, Physical review letters.

[71]  F. Giustino,et al.  On the combined use of GW approximation and cumulant expansion in the calculations of quasiparticle spectra: The paradigm of Si valence bands , 2016, 1606.06506.

[72]  E. Rotenberg,et al.  Enhanced Electron-Phonon Coupling at Metal Surfaces , 2003 .

[73]  Philip B. Allen,et al.  Theory of the temperature dependence of electronic band structures , 1976 .

[74]  Feliciano Giustino,et al.  Fröhlich Electron-Phonon Vertex from First Principles. , 2015, Physical review letters.

[75]  Feliciano Giustino,et al.  Electron-phonon interactions from first principles , 2016, 1603.06965.

[76]  W. Känzig,et al.  Paramagnetic resonance absorption of a V center in LiF , 1958 .

[77]  W. Känzig,et al.  The electronic structure of V-centers , 1957 .

[78]  W. Känzig Electron Spin Resonance ofV1-Centers , 1955 .

[79]  J. Avila,et al.  Observation of a two-dimensional liquid of Fröhlich polarons at the bare SrTiO3 surface , 2015, Nature Communications.

[80]  W. Schmidt,et al.  Phonon dispersion and zero-point renormalization of LiNbO3 from density-functional perturbation theory , 2015, Journal of physics. Condensed matter : an Institute of Physics journal.

[81]  Z. Shen,et al.  Coexistence of Replica Bands and Superconductivity in FeSe Monolayer Films. , 2016, Physical review letters.

[82]  H. Y. Fan Temperature Dependence of the Energy Gap in Semiconductors , 1951 .

[83]  Yannick Gillet,et al.  Temperature dependence of electronic eigenenergies in the adiabatic harmonic approximation , 2014, 1408.2752.