Fault-induced perturbed stress fields and associated tensile and compressive deformation at fault tips in the ice shell of Europa: implications for fault mechanics

Secondary fractures at the tips of strike-slip faults are common in the ice shell of Europa. Large magnitude perturbed stress fields must therefore be considered to be a viable driving mechanism for the development of part of the fracture sequence. Fault motions produce extensional and compressional quadrants around the fault tips. Theoretically, these quadrants can be associated with tensile and compressive deformational features (i.e. cracks and anti-cracks), respectively. Accordingly, we describe examples of both types of deformation at fault tips on Europa in the form of extensional tailcracks and compressional anti-cracks. The characteristics of these features with respect to the plane of the fault create a fingerprint for the mechanics of fault slip accumulation when compared with linear elastic fracture mechanics (LEFM) models of perturbed stress fields around fault tips. Tailcrack kink angles and curving geometry can be used to determine whether opening accompanies sliding motion. Kink angles in the 50e70 � range are common along strike-slip faults that resemble ridges, and indicate that little to no opening accompanied sliding. In contrast, tailcrack kink angles are closer to 30 � for strike-slip faults that resemble bands, with tailcrack curvatures opposite to ridge-like fault examples, indicating that these faults undergo significant dilation and infill during fault slip episodes. Anti-cracks, which may result from compression and volume reduction of porous near-surface ice, have geometries that further constrain fault motion history, corroborating the results of tailcrack analysis. The angular separation between anti-cracks and tailcracks are similar to LEFM predictions, indicating the absence of cohesive end-zones near the tips of Europan faults, hence suggesting homogeneous frictional properties along the fault length. Tailcrack analysis can be applied to the interpretation of cycloidal ridges: chains of arcuate cracks on Europa that are separated by sharp kinks called cusps. Cusp angles are reminiscent of tailcrack kink angles along ridge-like strike-slip faults. Cycloid growth in a temporally variable tidal stress field ultimately resolves shear stresses onto the near-tip region of a growing cycloid segment. Thus, resultant slip and associated tailcrack development may be the driving force behind the initiation of the succeeding arcuate segment, hence facilitating the ongoing propagation of the cycloid chain. 2005 Elsevier Ltd. All rights reserved.

[1]  C. Scholz,et al.  The process zone: A microstructural view of fault growth , 1998 .

[2]  Stephen J. Martel,et al.  Effects of cohesive zones on small faults and implications for secondary fracturing and fault trace geometry , 1997 .

[3]  J. Head,et al.  Europa: Stratigraphy and geological history of the anti‐Jovian region from Galileo E14 solid‐state imaging data , 1999 .

[4]  S. Kattenhorn,et al.  A revised model for cycloid growth mechanics on Europa: Evidence from surface morphologies and geometries , 2005 .

[5]  D. Peacock,et al.  Initiation of brittle faults in the upper crust: a review of field observations , 2004 .

[6]  B. R. Tufts,et al.  Strike-slip faults on Europa: Global shear patterns driven by tidal stress , 1998 .

[7]  R. Greeley,et al.  Resurfacing history of Europa from pole-to-pole geological mapping , 2004 .

[8]  D. Pollard,et al.  Joints at high angles to normal fault strike: an explanation using 3-D numerical models of fault-perturbed stress fields , 2000 .

[9]  A. McEwen Tidal reorientation and the fracturing of Jupiter's moon Europa , 1986, Nature.

[10]  D. Stevenson,et al.  Polar wander of an ice shell on Europa , 1987 .

[11]  E. Gaidos,et al.  Planetary science: Tectonics and water on Europa , 2000, Nature.

[12]  B. Lawn Fracture of Brittle Solids by Brian Lawn , 1993 .

[13]  E. Gaidos,et al.  Strike‐slip motion and double ridge formation on Europa , 2002 .

[14]  A. Aydin,et al.  Nucleation and growth of strike-slip faults in limestones from Somerset, U.K. , 1997 .

[15]  Joseph A. Burns,et al.  Evolution of Lineaments on Europa: Clues from Galileo Multispectral Imaging Observations , 1998 .

[16]  J. Petit,et al.  Palaeostress superimposition deduced from mesoscale structures in limestone: the Matelles exposure, Languedoc, France , 1995 .

[17]  S. B. Nicholson THE SATELLITES OF JUPITER , 1939 .

[18]  L. Soderblom,et al.  The geology of Europa , 1979 .

[19]  F. Erdogan,et al.  On the Crack Extension in Plates Under Plane Loading and Transverse Shear , 1963 .

[20]  Guozhu Zhao,et al.  Analysis of minor fractures associated with joints and faulted joints , 1991 .

[21]  S. Kattenhorn Nonsynchronous Rotation Evidence and Fracture History in the Bright Plains Region, Europa , 2002 .

[22]  W. F. Brace,et al.  A note on brittle crack growth in compression , 1963 .

[23]  J. Head,et al.  Evidence for shear failure in forming near-equatorial lineae on Europa , 2003 .

[24]  P. Helfenstein,et al.  Fractures on Europa - Possible response of an ice crust to tidal deformation , 1980 .

[25]  S. D. Kadel,et al.  Chaos on Europa , 1999 .

[26]  D. Pollard,et al.  Fault linkage: Three‐dimensional mechanical interaction between echelon normal faults , 1998 .

[27]  P. Helfenstein,et al.  Patterns of Fracture and Tidal Stresses Due to Nonsynchronous Rotation: Implications for Fracturing on Europa , 1984 .

[28]  W. McKinnon,et al.  Is There Evidence for Polar Wander on Europa , 1996 .

[29]  D. Pollard,et al.  8 – THEORETICAL DISPLACEMENTS AND STRESSES NEAR FRACTURES IN ROCK: WITH APPLICATIONS TO FAULTS, JOINTS, VEINS, DIKES, AND SOLUTION SURFACES , 1987 .

[30]  P. Schenk,et al.  Fault offsets and lateral crustal movement on Europa - Evidence for a mobile ice shell , 1985 .

[31]  Richard J. Greenberg,et al.  Astypalaea Linea: A Large-Scale Strike-Slip Fault on Europa , 1999 .

[32]  W. McKinnon,et al.  Convective instability in Europa's floating ice shell , 1997 .

[33]  Robert T. Pappalardo,et al.  Tectonic Processes on Europa: Tidal Stresses, Mechanical Response, and Visible Features , 1998 .

[34]  Thérèse Granier Origin, damping, and pattern of development of faults in granite , 1985 .

[35]  Hussain,et al.  Strain Energy Release Rate for a Crack Under Combined Mode I and Mode II , 1974 .

[36]  R. Pappalardo,et al.  Folds on Europa: implications for crustal cycling and accommodation of extension. , 2000, Science.

[37]  Kenneth L. Tanaka,et al.  Geologic mapping of Europa , 2000 .

[38]  S. Nemat-Nasser,et al.  Compression‐induced nonplanar crack extension with application to splitting, exfoliation, and rockburst , 1982 .

[39]  R. Greeley,et al.  Episodic plate separation and fracture infill on the surface of Europa , 1998, Nature.

[40]  Kevin Zahnle,et al.  Cratering Rates in the Outer Solar System , 1999 .

[41]  J. Rice,et al.  Slightly curved or kinked cracks , 1980 .

[42]  B. Atkinson Fracture Mechanics of Rock , 1987 .

[43]  David D. Pollard,et al.  Anticrack model for pressure solution surfaces , 1981 .

[44]  B. R. Tufts,et al.  Distribution of strike‐slip faults on Europa , 2000 .

[45]  G. Schubert,et al.  Interior composition, structure and dynamics of the Galilean satellites , 2004 .

[46]  B. R. Tufts,et al.  Lithospheric Dilation on Europa , 2000 .

[47]  R. Greeley,et al.  Geologic mapping of the northern leading hemisphere of Europa from Galileo solid‐state imaging data , 2000 .

[48]  A. Aydin,et al.  Role of fracture localization in arch formation, Arches National Park, Utah , 1994 .

[49]  A. Rubin Tensile fracture of rock at high confining pressure: implications for dike propagation , 1993 .

[50]  R. Rispoli Stress fields about strike-slip faults inferred from stylolites and tension gashes , 1981 .

[51]  J. Burns,et al.  Evidence for non-synchronous rotation of Europa , 1998, Nature.

[52]  M. Heimann,et al.  Impact of vegetation and preferential source areas on global dust aerosol: Results from a model study , 2002 .

[53]  E. Schulson On the origin of a wedge crack within the icy crust of Europa , 2002 .

[54]  Michele L. Cooke,et al.  Erratum: ``Fracture localization along faults with spatially varying friction'' , 1997 .

[55]  M. Rist,et al.  Microcracking and shear fracture in ice , 1994, Annals of Glaciology.

[56]  P. Helfenstein,et al.  Patterns of fracture and tidal stresses on Europa , 1983 .

[57]  R. Greeley,et al.  Geological evidence for solid-state convection in Europa's ice shell , 1998, Nature.

[58]  S. Kattenhorn,et al.  Blunt-ended dyke segments , 1995 .

[59]  J. Head,et al.  THE SPACING DISTANCES OF CHAOS AND LENTICULAE ON EUROPA , 2001 .

[60]  B. R. Tufts,et al.  Polar Wander and Surface Convergence of Europa's Ice Shell: Evidence from a Survey of Strike-Slip Displacement , 2002 .

[61]  D. Pollard,et al.  Is lithostatic loading important for the slip behavior and evolution of normal faults in the Earth's crust? , 1999 .

[62]  R. Sullivan,et al.  Morphology of Europan bands at high resolution: A mid‐ocean ridge‐type rift mechanism , 2002 .

[63]  T. Engelder,et al.  FRINGE CRACKS : KEY STRUCTURES FOR THE INTERPRETATION OF THE PROGRESSIVE ALLEGHANIAN DEFORMATION OF THE APPALACHIAN PLATEAU , 1999 .

[64]  S. Martel,et al.  Geometry and mechanics of secondary fracturing around small three‐dimensional faults in granitic rock , 1998 .

[65]  Timothy Edward Dowling,et al.  Jupiter : the planet, satellites, and magnetosphere , 2004 .

[66]  S. Kattenhorn Strike-slip fault evolution on Europa: evidence from tailcrack geometries , 2004 .

[67]  D. Pollard,et al.  Microstructure of deformation bands in porous sandstones at Arches National Park, Utah , 1994 .

[68]  Bruce F. Houghton,et al.  The encyclopedia of volcanoes , 1999 .

[69]  J. Head,et al.  Strike‐slip duplexing on Jupiter's icy moon Europa , 2000 .

[70]  Clark R. Chapman,et al.  Does Europa have a subsurface ocean? Evaluation of the geological evidence , 1999 .

[71]  David D. Pollard,et al.  Field relations between dikes and joints: Emplacement processes and paleostress analysis , 1986 .

[72]  B. R. Tufts,et al.  Formation of cycloidal features on Europa. , 1999, Science.

[73]  G. Sih Strain-energy-density factor applied to mixed mode crack problems , 1974 .

[74]  D. Pollard,et al.  On the orientation and patterns of wing cracks and solution surfaces at the tips of a sliding flaw or fault , 1998 .

[75]  J. Head,et al.  Evaluation of models for the formation of chaotic terrain on Europa , 2000 .

[76]  G. Schubert,et al.  Europa's differentiated internal structure: inferences from two Galileo encounters. , 1997, Science.

[77]  Z. T. Bieniawski,et al.  Brittle fracture propagation in rock under compression , 1965 .

[78]  S. Kattenhorn,et al.  The great thickness debate: Ice shell thickness models for Europa and comparisons with estimates based on flexure at ridges , 2005 .

[79]  B. R. Tufts,et al.  Rotation of Europa: Constraints from Terminator and Limb Positions , 1997 .

[80]  Robert T. Pappalardo,et al.  Europa: Morphological characteristics of ridges and triple bands from Galileo data (E4 and E6) and assessment of a linear diapirism model , 1999 .

[81]  R. Greenberg The evil twin of Agenor: tectonic convergence on Europa , 2004 .

[82]  B. R. Tufts,et al.  Europa's Rate of Rotation Derived from the Tectonic Sequence in the Astypalaea Region , 2001 .