Explicit Discontinuous Galerkin methods for unsteady problems

Abstract In this work we consider a special implementation of a discontinuous Galerkin (DG) method for general unstructured hexahedral element meshes called the discontinuous Galerkin Spectral Element Method (DGSEM). We are solving the compressible Navier–Stokes equations for unsteady turbulent flow simulations. We use explicit time stepping because of the high parallel scalability and also because the physical time scale of the simulation is in the range of the explicit time step restriction. In the explicit DGSEM framework, the efficiency of element-wise operations is highly improved compared to standard DG implementations. This improvement is due to collocated interpolation and integration points and tensor product nodal basis functions inside the hexahedron. In the first part of this paper, we describe the DGSEM scheme and derive the element-wise operators. We will conclude this part with accuracy and convergence analysis. The locality of the explicit DGSEM scheme is highly attractive for parallel computing, thus the second part is dedicated to a parallel performance analysis of the code. In the last part, we show the applicability of the scheme with a direct numerical simulation of a weak turbulent flow past a sphere at Reynolds number 1000.

[1]  Gregor Gassner,et al.  A Comparison of the Dispersion and Dissipation Errors of Gauss and Gauss-Lobatto Discontinuous Galerkin Spectral Element Methods , 2011, SIAM J. Sci. Comput..

[2]  J. Hesthaven,et al.  Nodal Discontinuous Galerkin Methods: Algorithms, Analysis, and Applications , 2007 .

[3]  Davis A. Kopriva,et al.  Computation of electromagnetic scattering with a non‐conforming discontinuous spectral element method , 2002 .

[4]  E. Toro Riemann Solvers and Numerical Methods for Fluid Dynamics , 1997 .

[5]  S. Rebay,et al.  High-Order Accurate Discontinuous Finite Element Solution of the 2D Euler Equations , 1997 .

[6]  Kelly Black,et al.  Spectral element approximation of convection—diffusion type problems , 2000 .

[7]  Chi-Wang Shu,et al.  The Runge-Kutta local projection $P^1$-discontinuous-Galerkin finite element method for scalar conservation laws , 1988, ESAIM: Mathematical Modelling and Numerical Analysis.

[8]  Bernardo Cockburn Discontinuous Galerkin methods , 2003 .

[9]  Gregor Gassner,et al.  On the Quadrature and Weak Form Choices in Collocation Type Discontinuous Galerkin Spectral Element Methods , 2010, J. Sci. Comput..

[10]  S. Rebay,et al.  Numerical evaluation of two discontinuous Galerkin methods for the compressible Navier–Stokes equations , 2002 .

[11]  Stefan Hickel,et al.  Implicit Turbulence Modeling for Large-Eddy Simulation , 2008 .

[12]  Chi-Wang Shu,et al.  The Runge-Kutta Discontinuous Galerkin Method for Conservation Laws V , 1998 .

[13]  M. Y. Hussaini,et al.  Discontinuous Spectral Element Approximation of Maxwell’s Equations , 2000 .

[14]  T. A. Zang,et al.  Spectral Methods: Fundamentals in Single Domains , 2010 .

[15]  Chi-Wang Shu,et al.  TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws III: one-dimensional systems , 1989 .

[16]  M. Brachet Direct simulation of three-dimensional turbulence in the Taylor–Green vortex , 1991 .

[17]  Claus-Dieter Munz,et al.  Polymorphic nodal elements and their application in discontinuous Galerkin methods , 2009, J. Comput. Phys..

[18]  Chi-Wang Shu,et al.  The Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws. IV. The multidimensional case , 1990 .

[19]  Jaap J. W. van der Vegt,et al.  Space-Time Discontinuous Galerkin Method for the Compressible Navier-Stokes , 2006 .

[20]  S. Rebay,et al.  A High-Order Accurate Discontinuous Finite Element Method for the Numerical Solution of the Compressible Navier-Stokes Equations , 1997 .

[21]  David A. Kopriva,et al.  Metric Identities and the Discontinuous Spectral Element Method on Curvilinear Meshes , 2006, J. Sci. Comput..

[22]  Claus-Dieter Munz,et al.  A RUNGE-KUTTA BASED DISCONTINUOUS GALERKIN METHOD WITH TIME ACCURATE LOCAL TIME STEPPING , 2011 .

[23]  S. Orszag,et al.  Numerical investigation of transitional and weak turbulent flow past a sphere , 2000, Journal of Fluid Mechanics.

[24]  Francis X. Giraldo,et al.  A Conservative Discontinuous Galerkin Semi-Implicit Formulation for the Navier-Stokes Equations in Nonhydrostatic Mesoscale Modeling , 2009, SIAM J. Sci. Comput..

[25]  Jan S. Hesthaven,et al.  Nodal high-order discontinuous Galerkin methods for the spherical shallow water equations , 2002 .

[26]  Marc Duruflé,et al.  Application of Discontinuous Galerkin spectral method on hexahedral elements for aeroacoustic , 2009 .

[27]  R. Hartmann,et al.  Symmetric Interior Penalty DG Methods for the CompressibleNavier-Stokes Equations I: Method Formulation , 2005 .

[28]  David Jon Furbish,et al.  Numerical Solution of the Dam-Break Problem with a Discontinuous Galerkin Method , 2004 .

[29]  Chi-Wang Shu Discontinuous Galerkin Methods , 2010 .

[30]  Ben Q. Li Discontinuous Finite Elements in Fluid Dynamics and Heat Transfer , 2005 .

[31]  Per-Olof Persson,et al.  The Compact Discontinuous Galerkin (CDG) Method for Elliptic Problems , 2007, SIAM J. Sci. Comput..

[32]  David A. Kopriva,et al.  Implementing Spectral Methods for Partial Differential Equations , 2009 .

[33]  David Jon Furbish,et al.  Application of the discontinuous spectral Galerkin method to groundwater flow , 2004 .

[34]  W. H. Reed,et al.  Triangular mesh methods for the neutron transport equation , 1973 .

[35]  Francis X. Giraldo,et al.  A study of spectral element and discontinuous Galerkin methods for the Navier-Stokes equations in nonhydrostatic mesoscale atmospheric modeling: Equation sets and test cases , 2008, J. Comput. Phys..

[36]  Chi-Wang Shu,et al.  TVB Runge-Kutta local projection discontinuous galerkin finite element method for conservation laws. II: General framework , 1989 .