Combination Synchronization of Three Identical or Different Nonlinear Complex Hyperchaotic Systems

In this paper, we investigate the combination synchronization of three nonlinear complex hyperchaotic systems: the complex hyperchaotic Lorenz system, the complex hyperchaotic Chen system and the complex hyperchaotic L¨u system. Based on the Lyapunov stability theory, corresponding controllers to achieve combination synchronization among three identical or different nonlinear complex hyperchaotic systems are derived, respectively. Numerical simulations are presented to demonstrate the validity and feasibility of the theoretical analysis.

[1]  Emad E. Mahmoud,et al.  A Hyperchaotic Complex Chen System and its Dynamics , 2007 .

[2]  Emad E. Mahmoud,et al.  Phase and antiphase synchronization of two identical hyperchaotic complex nonlinear systems , 2010 .

[3]  Emad E. Mahmoud,et al.  Complete synchronization of chaotic complex nonlinear systems with uncertain parameters , 2010 .

[4]  Tassos Bountis,et al.  Active Control and Global Synchronization of the Complex Chen and lÜ Systems , 2007, Int. J. Bifurc. Chaos.

[5]  Mark J. McGuinness,et al.  The complex Lorenz equations , 1982 .

[6]  Emad E. Mahmoud,et al.  Dynamics and synchronization of new hyperchaotic complex Lorenz system , 2012, Math. Comput. Model..

[7]  Emad E. Mahmoud,et al.  On the hyperchaotic complex Lü system , 2009 .

[8]  Gamal M. Mahmoud,et al.  Chaos control of chaotic limit cycles of real and complex van der Pol oscillators , 2004 .

[9]  Gamal M. Mahmoud,et al.  On Autonomous and nonautonomous Modified hyperchaotic Complex Lü Systems , 2011, Int. J. Bifurc. Chaos.

[10]  Sung Tae Jung,et al.  Adaptive H∞ synchronization for uncertain chaotic systems with external disturbance , 2010 .

[11]  Carroll,et al.  Synchronization in chaotic systems. , 1990, Physical review letters.

[12]  Luo Runzi,et al.  Combination synchronization of three classic chaotic systems using active backstepping design. , 2011, Chaos.

[13]  Emad E. Mahmoud,et al.  On projective synchronization of hyperchaotic complex nonlinear systems based on passive theory for secure communications , 2013 .

[14]  Gamal M. Mahmoud,et al.  Chaotic and hyperchaotic attractors of a complex nonlinear system , 2008 .

[15]  Emad E. Mahmoud,et al.  ANALYSIS OF HYPERCHAOTIC COMPLEX LORENZ SYSTEMS , 2008 .

[16]  Luo Runzi,et al.  Finite-time stochastic combination synchronization of three different chaotic systems and its application in secure communication. , 2012, Chaos.

[17]  Xiang Li,et al.  Adaptive modified function projective synchronization of general uncertain chaotic complex systems , 2012 .