Structured linear algebra problems in adaptive optics imaging

A main problem in adaptive optics is to reconstruct the phase spectrum given noisy phase differences. We present an efficient approach to solve the least-squares minimization problem resulting from this reconstruction, using either a truncated singular value decomposition (TSVD)-type or a Tikhonov-type regularization. Both of these approaches make use of Kronecker products and the generalized singular value decomposition. The TSVD-type regularization operates as a direct method whereas the Tikhonov-type regularization uses a preconditioned conjugate gradient type iterative algorithm to achieve fast convergence.

[1]  Harrison H Barrett,et al.  Maximum-likelihood methods in wavefront sensing: stochastic models and likelihood functions. , 2007, Journal of the Optical Society of America. A, Optics, image science, and vision.

[2]  L. Gilles,et al.  Order-N sparse minimum-variance open-loop reconstructor for extreme adaptive optics. , 2003, Optics letters.

[3]  Johnathan M. Bardsley,et al.  Wavefront Reconstruction Methods for Adaptive Optics Systems on Ground-Based Telescopes , 2008, SIAM J. Matrix Anal. Appl..

[4]  Brent L Ellerbroek,et al.  Efficient computation of minimum-variance wave-front reconstructors with sparse matrix techniques. , 2002, Journal of the Optical Society of America. A, Optics, image science, and vision.

[5]  J. Goodman Introduction to Fourier optics , 1969 .

[6]  Gene H. Golub,et al.  Matrix computations , 1983 .

[7]  Bobby R. Hunt,et al.  Matrix formulation of the reconstruction of phase values from phase differences , 1979 .

[8]  B. Welsh,et al.  Imaging Through Turbulence , 1996 .

[9]  Robert C. Cannon,et al.  Global wave-front reconstruction using Shack–Hartmann sensors , 1995 .

[10]  C. Loan The ubiquitous Kronecker product , 2000 .

[11]  Svenja Ettl,et al.  Shape reconstruction from gradient data. , 2007, Applied optics.

[12]  Michael A. Saunders,et al.  Algorithm 583: LSQR: Sparse Linear Equations and Least Squares Problems , 1982, TOMS.

[13]  David L. Fried,et al.  Least-square fitting a wave-front distortion estimate to an array of phase-difference measurements , 1977 .

[14]  Richard Dekany,et al.  Large-scale wave-front reconstruction for adaptive optics systems by use of a recursive filtering algorithm. , 2005, Applied optics.

[15]  Michael A. Saunders,et al.  LSQR: An Algorithm for Sparse Linear Equations and Sparse Least Squares , 1982, TOMS.

[16]  Golub Gene H. Et.Al Matrix Computations, 3rd Edition , 2007 .

[17]  Richard Dekany,et al.  Fast wave-front reconstruction by solving the Sylvester equation with the alternating direction implicit method. , 2004, Optics express.

[18]  Sergio Barbero,et al.  Wavefront sensing and reconstruction from gradient and Laplacian data measured with a Hartmann-Shack sensor. , 2006, Optics letters.

[19]  Gene H. Golub,et al.  Matrix computations (3rd ed.) , 1996 .

[20]  R. Hudgin Wave-front reconstruction for compensated imaging , 1977 .