A class of pseudo‐parabolic equations: existence, uniqueness of weak solutions, and error estimates for the Euler‐implicit discretization

In this paper, we investigate a class of pseudo-parabolic equations. Such equations model two-phase flow in porous media where dynamic effects are included in the capillary pressure. The existence and uniqueness of a weak solution are proved, and error estimates for an Euler implicit time discretization are obtained. Copyright © 2011 John Wiley & Sons, Ltd.

[1]  Iuliu Sorin Pop,et al.  A Numerical Scheme for the Pore-Scale Simulation of Crystal Dissolution and Precipitation in Porous Media , 2008, SIAM J. Numer. Anal..

[2]  Iuliu Sorin Pop,et al.  A New Class of Entropy Solutions of the Buckley-Leverett Equation , 2007, SIAM J. Math. Anal..

[3]  A generalized eigenproblem for the Laplacian which arises in lightning , 2008 .

[4]  Andro Mikelić,et al.  A global existence result for the equations describing unsaturated flow in porous med , 2010 .

[5]  E. A. Milne The Diffusion of Imprisoned Radiation Through a Gas , 1926 .

[6]  William G. Gray,et al.  Thermodynamic basis of capillary pressure in porous media , 1993 .

[7]  Jozef Kačur,et al.  Method of rothe in evolution equations , 1986 .

[8]  Alfio Quarteroni,et al.  Fourier spectral methods for pseudo-parabolic equations , 1987 .

[9]  Iuliu Sorin Pop Error Estimates for a Time Discretization Method for the Richards' Equation , 2001 .

[10]  Yuanzhong Fan,et al.  Existence of weak solutions to a degenerate pseudo-parabolic equation modeling two-phase flow in porous media , 2010 .

[11]  E. Richard,et al.  TIME-STEPPING GALERKIN METHODS FOR NONLINEAR SOBOLEV PARTIAL DIFFERENTIAL EQUATIONS* , 1978 .

[12]  F. Radu,et al.  Mixed finite elements for the Richards' equation: linearization procedure , 2004 .

[13]  W. D. Evans,et al.  PARTIAL DIFFERENTIAL EQUATIONS , 1941 .

[14]  Jim Douglas,et al.  Superconvergence of a finite element approximation to the solution of a Sobolev equation in a single space variable , 1981 .

[15]  Ralph E. Showalter,et al.  A Nonlinear Parabolic-Sobolev Equation , 1975 .

[16]  William H. Ford,et al.  Uniform Error Estimates for Difference Approximations to NonLinear Pseudo-Parabolic Partial Differential Equations , 1974 .

[17]  Andro Mikelic,et al.  Analysis of Model Equations for Stress-Enhanced Diffusion in Coal Layers. Part I: Existence of a Weak Solution , 2008, SIAM J. Math. Anal..

[18]  O. A. Ladyzhenskai︠a︡,et al.  Linear and quasilinear elliptic equations , 1968 .

[19]  B. Schweizer,et al.  Two-phase flow equations with outflow boundary conditions in the hydrophobic–hydrophilic case , 2010 .

[20]  Carlota M. Cuesta,et al.  Numerical schemes for a pseudo-parabolic Burgers equation : discontinuous data and long-time behaviour , 2009 .

[21]  Peter Knabner,et al.  Order of Convergence Estimates for an Euler Implicit, Mixed Finite Element Discretization of Richards' Equation , 2004, SIAM J. Numer. Anal..

[22]  Iuliu Sorin Pop,et al.  Travelling wave solutions for degenerate pseudo-parabolic equation modelling two-phase flow in porous media , 2013 .

[23]  G. I. Barenblatt,et al.  Basic concepts in the theory of seepage of homogeneous liquids in fissured rocks [strata] , 1960 .

[24]  Wen-An Yong,et al.  A numerical approach to degenerate parabolic equations , 2002, Numerische Mathematik.

[25]  Ricardo H. Nochetto,et al.  Approximation of Degenerate Parabolic Problems Using Numerical Integration , 1988 .

[26]  Josephus Hulshof,et al.  A model problem for groundwater flow with dynamic capillary pressure: stability of travelling waves , 2003 .

[27]  Nonlinear pseudoparabolic equations as singular limit of reaction–diffusion equations , 2006 .

[28]  Alexander A. Weiss,et al.  Dynamic capillary effects in heterogeneous porous media , 2007 .

[29]  Homogenization of a pseudoparabolic system , 2009 .