Quantum computation with Turaev–Viro codes

For a 3-manifold with triangulated boundary, the Turaev–Viro topological invariant can be interpreted as a quantum error-correcting code. The code has local stabilizers, identified by Levin and Wen, on a qudit lattice. Kitaev’s toric code arises as a special case. The toric code corresponds to an abelian anyon model, and therefore requires out-of-code operations to obtain universal quantum computation. In contrast, for many categories, such as the Fibonacci category, the Turaev–Viro code realizes a non-abelian anyon model. A universal set of fault-tolerant operations can be implemented by deforming the code with local gates, in order to implement anyon braiding. We identify the anyons in the code space, and present schemes for initialization, computation and measurement. This provides a family of constructions for fault-tolerant quantum computation that are closely related to topological quantum computation, but for which the fault tolerance is implemented in software rather than coming from a physical medium.

[1]  M. Freedman,et al.  From String Nets to Nonabelions , 2006, cond-mat/0610583.

[2]  Robert Koenig Composite anyon coding and the initialization of a topological quantum computer , 2009, 0910.2427.

[3]  Alexei Kitaev,et al.  Anyons in an exactly solved model and beyond , 2005, cond-mat/0506438.

[4]  R. Raussendorf,et al.  A fault-tolerant one-way quantum computer , 2005, quant-ph/0510135.

[5]  J. Preskill Reliable quantum computers , 1997, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[6]  N. Reshetikhin,et al.  Quantum Groups , 1993, hep-th/9311069.

[7]  A. Fowler,et al.  High-threshold universal quantum computation on the surface code , 2008, 0803.0272.

[8]  Xiao-Gang Wen,et al.  String-net condensation: A physical mechanism for topological phases , 2004, cond-mat/0404617.

[9]  V. Turaev,et al.  ON TWO APPROACHES TO 3-DIMENSIONAL TQFTS , 2010, 1006.3501.

[10]  Dorit Aharonov,et al.  Fault-tolerant quantum computation with constant error , 1997, STOC '97.

[11]  Density of the SO(3) TQFT Representation of Mapping Class Groups , 2004, math/0408161.

[12]  S. Simon,et al.  Non-Abelian Anyons and Topological Quantum Computation , 2007, 0707.1889.

[13]  S. Simon,et al.  Space–time geometry of topological phases , 2010, 1004.5586.

[14]  M. Rasetti,et al.  Braiding and entanglement in spin networks: a combinatorial approach to topological phases , 2008, 0806.3883.

[15]  V. Turaev,et al.  Ribbon graphs and their invaraints derived from quantum groups , 1990 .

[16]  Robert Raussendorf,et al.  Fault-tolerant quantum computation with high threshold in two dimensions. , 2007, Physical review letters.

[17]  John W. Barrett,et al.  Invariants of piecewise-linear 3-manifolds , 1993, hep-th/9311155.

[18]  T. Kohno Conformal field theory and topology , 2002 .

[19]  L. Chayes,et al.  Mean Field Analysis of Low–Dimensional Systems , 2009 .

[20]  Michael H. Freedman Quantum Computation and the Localization of Modular Functors , 2001, Found. Comput. Math..

[21]  Mikhail N. Vyalyi,et al.  Classical and Quantum Computation , 2002, Graduate studies in mathematics.

[22]  S. Braunstein,et al.  Quantum computation , 1996 .

[23]  S. D. Stirling Counterexamples in Levin-Wen string-net models, group categories, and Turaev unimodality , 2010, 1004.1737.

[24]  B. M. Fulk MATH , 1992 .

[25]  G. Vidal,et al.  Exact entanglement renormalization for string-net models , 2008, 0806.4583.

[26]  Vladimir Turaev,et al.  State sum invariants of 3 manifolds and quantum 6j symbols , 1992 .

[27]  J. Preskill,et al.  Topological quantum memory , 2001, quant-ph/0110143.

[28]  L. Crane 2-d physics and 3-d topology , 1991 .

[29]  Michael Larsen,et al.  A Modular Functor Which is Universal¶for Quantum Computation , 2000, quant-ph/0001108.

[30]  S. Simon,et al.  Braid topologies for quantum computation. , 2005, Physical review letters.

[31]  Spherical Categories , 1993, hep-th/9310164.

[32]  Justin Roberts,et al.  Skein theory and Turaev-Viro invariants , 1995 .

[33]  From subfactors to categories and topology. II. The quantum double of tensor categories and subfactors , 2001, math/0111205.

[34]  Edward Witten,et al.  Quantum field theory and the Jones polynomial , 1989 .

[35]  S. Simon,et al.  Topological quantum compiling , 2006, quant-ph/0610111.

[36]  From subfactors to categories and topology. I. Frobenius algebras in and Morita equivalence of tensor categories , 2001, math/0111204.

[37]  Zhenghan Wang,et al.  On Classification of Modular Tensor Categories , 2007, 0712.1377.

[38]  T. Kohno Topological invariants for 3-manifolds using representations of mapping class groups I , 1992 .

[39]  Vladimir Turaev,et al.  Invariants of 3-manifolds via link polynomials and quantum groups , 1991 .

[40]  E. Knill,et al.  Resilient quantum computation: error models and thresholds , 1997, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[41]  L. Landau Fault-tolerant quantum computation by anyons , 2003 .

[42]  V. Turaev Quantum Invariants of Knots and 3-Manifolds , 1994, hep-th/9409028.