Sparse and Low-Rank Matrix Decomposition for Automatic Target Detection in Hyperspectral Imagery

Given a target prior information, our goal is to propose a method for automatically separating targets of interests from the background in hyperspectral imagery. More precisely, we regard the given hyperspectral image (HSI) as being made up of the sum of low-rank background HSI and a sparse target HSI that contains the targets based on a prelearned target dictionary constructed from some online spectral libraries. Based on the proposed method, two strategies are briefly outlined and evaluated to realize the target detection on both synthetic and real experiments.

[1]  Louis L. Scharf,et al.  The CFAR adaptive subspace detector is a scale-invariant GLRT , 1999, IEEE Trans. Signal Process..

[2]  John Wright,et al.  Robust Principal Component Analysis: Exact Recovery of Corrupted Low-Rank Matrices via Convex Optimization , 2009, NIPS.

[3]  Dacheng Tao,et al.  Manifold elastic net for sparse learning , 2009, 2009 IEEE International Conference on Systems, Man and Cybernetics.

[4]  Jocelyn Chanussot,et al.  Low-Rank Decomposition and Total Variation Regularization of Hyperspectral Video Sequences , 2018, IEEE Transactions on Geoscience and Remote Sensing.

[5]  F. Lehmann,et al.  HyMap hyperspectral remote sensing to detect hydrocarbons , 2001 .

[6]  Bo Du,et al.  A Sparse Representation-Based Binary Hypothesis Model for Target Detection in Hyperspectral Images , 2015, IEEE Transactions on Geoscience and Remote Sensing.

[7]  Loong Fah Cheong,et al.  Sparsity-Based cholesky factorization and its application to hyperspectral anomaly detection , 2017, 2017 IEEE 7th International Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP).

[8]  Stephen P. Boyd,et al.  Distributed Optimization and Statistical Learning via the Alternating Direction Method of Multipliers , 2011, Found. Trends Mach. Learn..

[9]  D. K. Peeler,et al.  The U , 2002 .

[10]  Dimitris G. Manolakis,et al.  Is there a best hyperspectral detection algorithm? , 2009, Defense + Commercial Sensing.

[11]  E. M. Winter,et al.  Anomaly detection from hyperspectral imagery , 2002, IEEE Signal Process. Mag..

[12]  Yong Yu,et al.  Robust Recovery of Subspace Structures by Low-Rank Representation , 2010, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[13]  Yuan Yan Tang,et al.  Simultaneous Spectral-Spatial Feature Selection and Extraction for Hyperspectral Images , 2019, IEEE Transactions on Cybernetics.

[14]  Nasser M. Nasrabadi,et al.  Regularized Spectral Matched Filter for Target Recognition in Hyperspectral Imagery , 2008, IEEE Signal Processing Letters.

[15]  Antonio J. Plaza,et al.  Anomaly Detection in Hyperspectral Images Based on Low-Rank and Sparse Representation , 2016, IEEE Transactions on Geoscience and Remote Sensing.

[16]  Olivier Ledoit,et al.  A well-conditioned estimator for large-dimensional covariance matrices , 2004 .

[17]  Jun Qin,et al.  Low-Rank and Sparsity Analysis Applied to Speech Enhancement Via Online Estimated Dictionary , 2016, IEEE Signal Processing Letters.

[18]  Joana Frontera-Pons,et al.  False-alarm regulation for target detection in hyperspectral imaging , 2013, 2013 5th IEEE International Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP).

[19]  Miguel Angel Veganzones,et al.  Hyperspectral Anomaly Detectors Using Robust Estimators , 2016, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[20]  Yacine Chitour,et al.  Generalized Robust Shrinkage Estimator and Its Application to STAP Detection Problem , 2013, IEEE Transactions on Signal Processing.

[21]  Alfred O. Hero,et al.  Robust Shrinkage Estimation of High-Dimensional Covariance Matrices , 2010, IEEE Transactions on Signal Processing.

[22]  S. Dutta,et al.  Study of crop growth parameters using Airborne Imaging Spectrometer data , 2001 .

[23]  Jocelyn Chanussot,et al.  Joint Reconstruction and Anomaly Detection From Compressive Hyperspectral Images Using Mahalanobis Distance-Regularized Tensor RPCA , 2018, IEEE Transactions on Geoscience and Remote Sensing.

[24]  Nasser M. Nasrabadi,et al.  Automated Hyperspectral Cueing for Civilian Search and Rescue , 2009, Proceedings of the IEEE.

[25]  W. Marsden I and J , 2012 .

[26]  Yacine Chitour,et al.  Shrinkage covariance matrix estimator applied to STAP detection , 2014, 2014 IEEE Workshop on Statistical Signal Processing (SSP).

[27]  L. Ammann Robust Principal Components , 1989 .

[28]  S. J. Sutley,et al.  Mapping Advanced Argillic Alteration at Cuprite, Nevada, Using Imaging Spectroscopy , 2014 .

[29]  Loong Fah Cheong,et al.  Simultaneous sparsity-based binary hypothesis model for real hyperspectral target detection , 2017, 2017 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

[30]  Olivier Ledoit,et al.  Honey, I Shrunk the Sample Covariance Matrix , 2003 .

[31]  Yi Ma,et al.  Robust principal component analysis? , 2009, JACM.

[32]  Aaas News,et al.  Book Reviews , 1893, Buffalo Medical and Surgical Journal.

[33]  Joana Frontera-Pons,et al.  Robust ANMF Detection in Noncentered Impulsive Background , 2017, IEEE Signal Processing Letters.

[34]  Joel A. Tropp,et al.  Algorithms for simultaneous sparse approximation. Part I: Greedy pursuit , 2006, Signal Process..

[35]  Trac D. Tran,et al.  Sparse Representation for Target Detection in Hyperspectral Imagery , 2011, IEEE Journal of Selected Topics in Signal Processing.

[36]  Alexander F. H. Goetz,et al.  Effects of spectrometer band pass, sampling, and signal‐to‐noise ratio on spectral identification using the Tetracorder algorithm , 2003 .

[37]  Stephen J. Wright,et al.  Computational Methods for Sparse Solution of Linear Inverse Problems , 2010, Proceedings of the IEEE.

[38]  G. Shaw,et al.  Signal processing for hyperspectral image exploitation , 2002, IEEE Signal Process. Mag..

[39]  Emmanuel J. Candès,et al.  A Singular Value Thresholding Algorithm for Matrix Completion , 2008, SIAM J. Optim..

[40]  Trac D. Tran,et al.  Simultaneous Joint Sparsity Model for Target Detection in Hyperspectral Imagery , 2011, IEEE Geoscience and Remote Sensing Letters.

[41]  Joana Frontera-Pons,et al.  Adaptive Nonzero-Mean Gaussian Detection , 2017, IEEE Transactions on Geoscience and Remote Sensing.

[42]  Bo Du,et al.  Ensemble manifold regularized sparse low-rank approximation for multiview feature embedding , 2015, Pattern Recognit..

[43]  Daniel P. W. Ellis,et al.  Speech enhancement by sparse, low-rank, and dictionary spectrogram decomposition , 2013, 2013 IEEE Workshop on Applications of Signal Processing to Audio and Acoustics.

[44]  Yi Ma,et al.  The Augmented Lagrange Multiplier Method for Exact Recovery of Corrupted Low-Rank Matrices , 2010, Journal of structural biology.

[45]  E. J. Kelly An Adaptive Detection Algorithm , 1986, IEEE Transactions on Aerospace and Electronic Systems.

[46]  Xiaodong Li,et al.  Stable Principal Component Pursuit , 2010, 2010 IEEE International Symposium on Information Theory.

[47]  Jocelyn Chanussot,et al.  Robust anomaly detection in Hyperspectral Imaging , 2014, 2014 IEEE Geoscience and Remote Sensing Symposium.

[48]  G. Sapiro,et al.  A collaborative framework for 3D alignment and classification of heterogeneous subvolumes in cryo-electron tomography. , 2013, Journal of structural biology.

[49]  B. McKay Honey , 1870, Hall's journal of health.

[50]  Frédéric Pascal,et al.  Anomaly detection and estimation in hyperspectral imaging using Random Matrix Theory tools , 2015, 2015 IEEE 6th International Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP).

[51]  S. Hook,et al.  The ASTER spectral library version 2.0 , 2009 .

[52]  Loong Fah Cheong,et al.  Target and Background Separation in Hyperspectral Imagery for Automatic Target Detection , 2018, 2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

[53]  Konstantinos Kalpakis,et al.  Low-rank decomposition-based anomaly detection , 2013, Defense, Security, and Sensing.

[54]  Dimitris G. Manolakis,et al.  Comparative analysis of hyperspectral adaptive matched filter detectors , 2000, SPIE Defense + Commercial Sensing.

[55]  Gary A. Shaw,et al.  Hyperspectral Image Processing for Automatic Target Detection Applications , 2003 .

[56]  Bo Du,et al.  A Low-Rank and Sparse Matrix Decomposition-Based Mahalanobis Distance Method for Hyperspectral Anomaly Detection , 2016, IEEE Transactions on Geoscience and Remote Sensing.

[57]  D. Manolakis,et al.  Hyperspectral Imaging Remote Sensing: Physics, Sensors, and Algorithms , 2016 .

[58]  A. Berk MODTRAN : A moderate resolution model for LOWTRAN7 , 1989 .

[59]  Tim R. McVicar,et al.  Preprocessing EO-1 Hyperion hyperspectral data to support the application of agricultural indexes , 2003, IEEE Trans. Geosci. Remote. Sens..

[60]  Dimitri P. Bertsekas,et al.  Constrained Optimization and Lagrange Multiplier Methods , 1982 .

[61]  Eric Truslow,et al.  Detection Algorithms in Hyperspectral Imaging Systems: An Overview of Practical Algorithms , 2014, IEEE Signal Processing Magazine.

[62]  Dimitris G. Manolakis,et al.  Detection algorithms for hyperspectral imaging applications , 2002, IEEE Signal Process. Mag..