Tailoring the physical properties of thiol-capped PbS quantum dots by thermal annealing

We show that the thermal annealing of thiol-capped PbS colloidal quantum dots provides a means of narrowing the nanoparticle size distribution, increasing the size of the quantum dots and facilitating their coalescence preferentially along the 100 crystallographic axes. We exploit these phenomena to tune the photoluminescence emission of an ensemble of dots and to narrow the optical linewidth to values that compare with those reported at room temperature for single PbS quantum dots. We probe the influence of annealing on the electronic properties of the quantum dots by temperature dependent studies of the photoluminescence and magneto-photoluminescence.

[1]  Byung-Ryool Hyun,et al.  Near-infrared fluorescence imaging with water-soluble lead salt quantum dots. , 2007, The journal of physical chemistry. B.

[2]  Mohamed Henini,et al.  Temperature dependence of the photoluminescence emission from thiol-capped PbS quantum dots , 2007 .

[3]  Chao Liu,et al.  Laser-induced blue-shift of the photoluminescence from PbS quantum dots in glasses , 2008 .

[4]  T. Krauss,et al.  Fluorescence spectroscopy of single lead sulfide quantum dots. , 2006, Nano letters.

[5]  Masaaki Nakayama,et al.  Photoluminescence properties related to localized states in colloidal PbS quantum dots , 2006 .

[6]  Yi Cui,et al.  Hyperbranched lead selenide nanowire networks. , 2007, Nano letters.

[7]  C. Sorensen,et al.  Digestive-Ripening Agents for Gold Nanoparticles: Alternatives to Thiols , 2003 .

[8]  S. Mann,et al.  Aqueous Near‐Infrared Fluorescent Composites Based on Apoferritin‐Encapsulated PbS Quantum Dots , 2008 .

[9]  L. Feldman,et al.  Clustering on surfaces , 1992 .

[10]  Ying Wang,et al.  PbS in polymers. From molecules to bulk solids , 1987 .

[11]  T. Reinecke,et al.  Exciton diamagnetic shift in semiconductor nanostructures , 1998 .

[12]  K. K. Rao,et al.  Temperature and capping dependence of NIR emission from PbS nano-microcrystallites with different morphologies , 2009 .

[13]  Gregory D. Scholes,et al.  Colloidal PbS Nanocrystals with Size‐Tunable Near‐Infrared Emission: Observation of Post‐Synthesis Self‐Narrowing of the Particle Size Distribution , 2003 .

[14]  F. F. Castillón-Barraza,et al.  Excitonic absorption of spherical PbS nanoparticles in zeolite A , 2003 .

[15]  F. Wise,et al.  Lead salt quantum dots: the limit of strong quantum confinement. , 2000, Accounts of chemical research.

[16]  Edward H. Sargent,et al.  Efficient solution-processed infrared photovoltaic cells: Planarized all-inorganic bulk heterojunction devices via inter-quantum-dot bridging during growth from solution , 2007 .

[17]  René A. J. Janssen,et al.  PbSe nanocrystal network formation during pyridine ligand displacement. , 2009, ACS applied materials & interfaces.

[18]  Edward H. Sargent,et al.  Impact of dithiol treatment and air annealing on the conductivity, mobility, and hole density in PbS colloidal quantum dot solids , 2008 .

[19]  G. Konstantatos,et al.  Solution-processed PbS quantum dot infrared photodetectors and photovoltaics , 2005, Nature materials.

[20]  A. Rogach,et al.  Infrared-emitting colloidal nanocrystals: synthesis, assembly, spectroscopy, and applications. , 2007, Small.

[21]  Louis E. Brus,et al.  Drying-mediated self-assembly of nanoparticles , 2003, Nature.

[22]  Edward H. Sargent,et al.  Efficient Infrared‐Emitting PbS Quantum Dots Grown on DNA and Stable in Aqueous Solution and Blood Plasma , 2005 .