Kullback-Leibler approximation of spectral density functions
暂无分享,去创建一个
[1] S. Haykin. Nonlinear Methods of Spectral Analysis , 1980 .
[2] Tryphon T. Georgiou,et al. A new approach to spectral estimation: a tunable high-resolution spectral estimator , 2000, IEEE Trans. Signal Process..
[3] I. Good. Maximum Entropy for Hypothesis Formulation, Especially for Multidimensional Contingency Tables , 1963 .
[4] K. Hoffman. Banach Spaces of Analytic Functions , 1962 .
[5] Anders Lindquist,et al. A Convex Optimization Approach to Generalized Moment Problems , 2003 .
[6] Tryphon T. Georgiou,et al. Spectral analysis based on the state covariance: the maximum entropy spectrum and linear fractional parametrization , 2002, IEEE Trans. Autom. Control..
[7] Ryozo Nagamune. A robust solver using a continuation method for Nevanlinna-Pick interpolation with degree constraint , 2003, IEEE Trans. Autom. Control..
[8] P. Enqvist. A homotopy approach to rational covariance extension with degree constraint , 2001 .
[9] Tryphon T. Georgiou,et al. Spectral estimation via selective harmonic amplification , 2001, IEEE Trans. Autom. Control..
[10] C. Byrnes,et al. A Convex Optimization Approach to the Rational Covariance Extension Problem , 1999 .
[11] Tryphon T. Georgiou,et al. A generalized entropy criterion for Nevanlinna-Pick interpolation with degree constraint , 2001, IEEE Trans. Autom. Control..
[12] I. Csiszár. $I$-Divergence Geometry of Probability Distributions and Minimization Problems , 1975 .
[13] Anders Lindquist,et al. From Finite Covariance Windows to Modeling Filters: A Convex Optimization Approach , 2001, SIAM Rev..