On the construction and MAP decoding of optimal variable-length error-correcting codes

In this paper, we present a novel algorithm that guarantees of finding a variable-length error-correcting code (VLEC) with minimal average codeword length for a fixed free distance dfree. We also propose a low complexity maximum a posterior (MAP) decoding algorithm for our codes under the premise that the receiver knows the number of codewords being transmitted. The resulting VLEC provides significant gains over other codes from the literature. When compared with separate source-channel tandem codes with identical dfree, such as a tandem code consisting of a Huffman source code concatenated with a (2, 1, 4) tail-biting convolutional channel code, our system has only a 0.3 dB performance loss at a bit error rate of 10−5 while requiring significantly less decoding complexity.

[1]  Lie-Liang Yang,et al.  Iterative construction of reversible variable-length codes and variable-length error-correcting codes , 2004, IEEE Communications Letters.

[2]  Patrick G. Farrell,et al.  Variable-length error-correcting codes , 2000 .

[3]  Joachim Hagenauer,et al.  Iterative source/channel-decoding using reversible variable length codes , 2000, Proceedings DCC 2000. Data Compression Conference.

[4]  V. Balakirsky Joint source-channel coding with variable length codes , 1997, Proceedings of IEEE International Symposium on Information Theory.

[5]  Serap A. Savari,et al.  When Huffman Meets Hamming: A Class of Optimal Variable-Length Error Correcting Codes , 2010, 2010 Data Compression Conference.

[6]  Amadou Diallo,et al.  Optimizing the free distance of Error-Correcting Variable-Length Codes , 2010, 2010 IEEE International Workshop on Multimedia Signal Processing.

[7]  Yunghsiang Sam Han,et al.  A maximum-likelihood soft-decision sequential decoding algorithm for binary convolutional codes , 2002, IEEE Trans. Commun..

[8]  Ronald L. Rivest,et al.  Introduction to Algorithms , 1990 .

[9]  Amadou Diallo,et al.  Efficient Computation and Optimization of the Free Distance of Variable-Length Finite-State Joint Source-Channel Codes , 2011, IEEE Transactions on Communications.

[10]  Yunghsiang Sam Han,et al.  An A*-Based Algorithm for Constructing Reversible Variable Length Codes with Minimum Average Codeword Length , 2010, IEEE Transactions on Communications.

[11]  Victor Buttigieg,et al.  On variable-length error-correcting codes , 1994, Proceedings of 1994 IEEE International Symposium on Information Theory.

[12]  Yunghsiang Sam Han,et al.  Low-complexity ML decoding for convolutional tail-biting codes , 2008, IEEE Communications Letters.

[13]  Catherine Lamy,et al.  Optimised constructions for variable-length error correcting codes , 2003, Proceedings 2003 IEEE Information Theory Workshop (Cat. No.03EX674).

[14]  Yunghsiang Sam Han,et al.  Soft-decision priority-first decoding algorithms for variable-length error-correcting codes , 2008, IEEE Communications Letters.