Enhanced Adhesion of Bioinspired Microadhesives Based on Silicone Elastomers with Designed Macromolecular Structures

[1]  Yiyuan Zhang,et al.  Laser-induced morphology-switchable slanted shape memory microcones for maneuvering liquid droplets and dry adhesion , 2022, Applied Physics Letters.

[2]  Hongmiao Tian,et al.  Bioinspired Hierarchical Structures for Contact‐Sensible Adhesives , 2021, Advanced Functional Materials.

[3]  Jixi Zhang,et al.  Large-Scale Spraying Fabrication of Robust Fluorine-Free Superhydrophobic Coatings Based on Dual-Sized Silica Particles for Effective Antipollution and Strong Buoyancy. , 2021, Langmuir : the ACS journal of surfaces and colloids.

[4]  Zhibo Li,et al.  Superior Low‐Temperature Reversible Adhesion Based on Bio‐Inspired Microfibrillar Adhesives Fabricated by Phenyl Containing Polydimethylsiloxane Elastomers , 2021, Advanced Functional Materials.

[5]  Longjian Xue,et al.  Adhesion Enhancement of Micropillar Array by Combining the Adhesive Design from Gecko and Tree Frog. , 2020, Small.

[6]  S. Meguid,et al.  Development of novel superhydrophobic coatings using siloxane-modified epoxy nanocomposites , 2020 .

[7]  S. Gorb,et al.  Humidity-Modulated Core–Shell Nanopillars for Enhancement of Gecko-Inspired Adhesion , 2020 .

[8]  M. Spenko,et al.  Evaluation of silicone elastomers as structural materials for microstructured adhesives , 2019, Bioinspiration & biomimetics.

[9]  Sarah C. L. Fischer,et al.  In Situ Observation Reveals Local Detachment Mechanisms and Suction Effects in Micropatterned Adhesives , 2019, Advanced Functional Materials.

[10]  Z. Lou,et al.  Skin Adhesives with Controlled Adhesion by Polymer Chain Mobility. , 2018, ACS applied materials & interfaces.

[11]  Eduard Arzt,et al.  Engineering Micropatterned Dry Adhesives: From Contact Theory to Handling Applications , 2018 .

[12]  S. Gorb,et al.  Remote Control over Underwater Dynamic Attachment/Detachment and Locomotion , 2018, Advanced materials.

[13]  Zhengzhi Wang,et al.  Slanted Functional Gradient Micropillars for Optimal Bioinspired Dry Adhesion. , 2018, ACS nano.

[14]  Michael M. Becker,et al.  Funnel‐Shaped Microstructures for Strong Reversible Adhesion , 2017 .

[15]  Yu Tian,et al.  Controllable Anisotropic Dry Adhesion in Vacuum: Gecko Inspired Wedged Surface Fabricated with Ultraprecision Diamond Cutting , 2017 .

[16]  Yu Tian,et al.  Friction Contribution to Bioinspired Mushroom‐Shaped Dry Adhesives , 2017 .

[17]  Minsu Kang,et al.  Simple and Reliable Fabrication of Bioinspired Mushroom-Shaped Micropillars with Precisely Controlled Tip Geometries. , 2016, ACS applied materials & interfaces.

[18]  Huiming Wang,et al.  Effect of CO2 Gas on the Swelling and Tribological Behaviors of NBR Rubber in Water , 2015 .

[19]  Alyssa Y. Stark,et al.  The Role of Surface Chemistry in Adhesion and Wetting of Gecko Toe Pads , 2014, Scientific Reports.

[20]  G. Carbone,et al.  Sticky bio-inspired micropillars: finding the best shape. , 2012, Small.

[21]  Giuseppe Carbone,et al.  Origin of the superior adhesive performance of mushroom-shaped microstructured surfaces , 2011 .

[22]  Aaron Parness,et al.  A microfabricated wedge-shaped adhesive array displaying gecko-like dynamic adhesion, directionality and long lifetime , 2009, Journal of The Royal Society Interface.

[23]  Haeshin Lee,et al.  Mussel-Inspired Surface Chemistry for Multifunctional Coatings , 2007, Science.

[24]  Eduard Arzt,et al.  Contact shape controls adhesion of bioinspired fibrillar surfaces. , 2007, Langmuir : the ACS journal of surfaces and colloids.

[25]  Bruce P. Lee,et al.  A reversible wet/dry adhesive inspired by mussels and geckos , 2007, Nature.

[26]  S. Gorb,et al.  Biomimetic mushroom-shaped fibrillar adhesive microstructure , 2007, Journal of The Royal Society Interface.

[27]  Tian Tang,et al.  Can a fibrillar interface be stronger and tougher than a non-fibrillar one? , 2005, Journal of The Royal Society Interface.

[28]  A. Jagota,et al.  Design of biomimetic fibrillar interfaces: 1. Making contact , 2004, Journal of The Royal Society Interface.

[29]  A. Jagota,et al.  Design of biomimetic fibrillar interfaces: 2. Mechanics of enhanced adhesion , 2004, Journal of The Royal Society Interface.

[30]  Huajian Gao,et al.  Shape insensitive optimal adhesion of nanoscale fibrillar structures. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[31]  K. Saalwächter Detection of heterogeneities in dry and swollen polymer networks by proton low-field NMR spectroscopy. , 2003, Journal of the American Chemical Society.

[32]  R. Full,et al.  Evidence for van der Waals adhesion in gecko setae , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[33]  R. Full,et al.  Adhesive force of a single gecko foot-hair , 2000, Nature.

[34]  D. Maugis,et al.  The force of adhesion between solid surfaces in contact , 1978 .

[35]  D. K. Owens,et al.  Estimation of the surface free energy of polymers , 1969 .

[36]  R. Ruibal,et al.  The structure of the digital setae of lizards , 1965, Journal of morphology.